
SerNet

April 24, 2013

Volker Lendecke

SerNet GmbH, Göttingen - Berlin

Samba/CTDB/GPFS

SerNetSMB: Server Message Block

 Protocol grown over a long time

 Origins based on MS-DOS system calls

 „Int 0x21 on the network“

 Drive D: Mapped over the network

 Semantics tracable to single tasking DOS

 Applications expected to be the only file openers

SerNetSMB 1, 2, 3

 SMB1: The only Protocol up to Windows Vista

 Evolutionary development from MS-DOS to Windows 2003:

 NTFS-Semantics, Unicode File Names

 Hundreds of client and server implementations

 SMB2 (Windows Vista): New implementation

 SMB3 (Windows 8 / 2012): Substantial new features

 Scalability, High Availability

SerNetGPFS: Cluster file system

 GPFS presents a Posix view across nodes on a shared set

of disks

 Born in the Multimedia space, grown to HPC, expanded to

general file system tasks

 Many extensions

 Snapshots

 Rich ACLs

 Interoperability (Windows client)

SerNetSamba: Protocol translation

 Samba sits between the Windows and the Posix worlds

 SMB protocol carries a lot of Windows semantics

 Opening files very Windows-like (more later...)

 Smbd is the most prominent daemon translating Windows

to Posix semantics

 All file operations need to live with Posix semantics

 Samba's VFS is a pluggable module interface

 All Posix calls can be intercepted

 VFS extensions exist for advanced file systems

SerNetvfs_gpfs

 GPFS can server SMB shares without a module

 Samba works with „just Posix“

 GPFS provides extensions for functionality and

performance

 Special API, bypassing the standard Linux Kernel

interfaces

 Library is GPL compatible

SerNetOpening a File in Posix

 Check the path

 Do all directories exist?

 x-Bit permissions on complete path?

 File exists?

 Permissions sufficient?

 -> File gets opened

 For every single process that's pure read operations

 Easy to parallelize

SerNetOpen a file in SMB

 In general, similar operations

 Path check (case insensitive file names)

 Permission check (ACLs)

 Share Modes

 Windows CreateFile API, Parameter dwShareModes:

 If this parameter is zero and CreateFile succeeds, the

file or device cannot be shared and cannot be opened

again until the handle to the file or device is closed.

 Every open must know of all other opens

SerNetSamba Architecture

 Single Threaded, Multi-Process smbd

 Threads for async pread/pwrite

 Every client opens basically one TCP connection

 One smbd for each client

 Protocol allows for many user sessions and share connects

over one TCP connection

SerNetShare mode implementation

 Every Samba process knows of all open files

 Metadata for open handles held in shared memory

 Trivial database tdb

 Multi-writer key/value database

 Share mode database indexed by device/inode

 Other metadata, for example „delete on close flag“ held in

that database

SerNetCase Insensitive File Names

 In Posix. Test.txt and tEst.TxT are different files

 Windows and SMB see those as just one

 When Windows opens a file with wrong upper/lower case,

Samba has to list all files

 When Windows creates a file, Samba has to prove that it

does not exist in a different combination → search again

 GPFS offers a getrealfilename API

 Case insensitive search

 No directory listing required anymore

SerNetACLs

 Posix: rwxrwxrwx

 Extremely limited, but understandable

 Posix ACLs: rwx for supplementary users and groups

 Simple inheritance

 Windows ACLs:

 More than a dozen separate permissions

 Complex inheritance rules

 Files can be owned by groups

 NFSv4 ACLs

 Almost, but not quite as Windows

SerNetACLs on GPFS

 GPFS has several ACL modes

 Posix only, NFSv4 only, mixed

 All with a separate, non-standard API

 Well, there is no such thing as an NFSv4 ACL API

 vfs_gpfs provides access to NFSv4 ACLs

SerNetWindows attributes

 Samba has to store extra attributes:

 Read-Only, Archive, System, Hidden

 Historically, mapped to „x“ bits

 With „store dos attributes = yes“ Samba stores that data in

a posix extended attribute

 Xattrs historically slow in GPFS

 Special API to store Windows attributes in GPFS Inode

 A lot faster

 Archive in the future with automatic semantics

SerNetLeases, Share Modes

 NFSv4 provides much of Windows semantics

 GPFS has support for share modes and leases to

support NFSv4

 NFSv4 and SMB share modes and oplocks don't fully

match

 Gpfs:leases = no and gpfs:share modes = no is a very

common configuration for SMB-only shares

SerNetPerformance

 GPFS is made for large files

 GPFS blocksize large (1M not uncommon)

 Small file workload can be slow

 Fcntl locks don't scale

 Large files: Async I/O

SerNetvfs_preopen

 Stream out video with one file per frame

 A few megabytes at most

 Opening a file takes some milliseconds, streaming does

not work due to latencies

 Frame Files are numbered

 vfs_preopen will fork processes that open and start

reading the next files

 Files are pre-cached

 300 Mbyte/sec demonstrated with small file workload

SerNetFcntl locks

 Posix has advisory locks

 Locking byte ranges does not block read/write

 Windows does mandatory locks

 Slightly different semantics (locks are not merged)

 Cross-protocol locking: Match Windows locks to Posix locks

 Every SMB read/write request must query GPFS locks

 GPFS is slow for high numbers of fcntl locks

 „posix locking = no“ for SMB only exports

SerNetAsync I/O

 GPFS is very good for scaling disks, files and threads

 Given enough processes, GPFS can keep tons of disks

busy

 SMB2 clients send parallel reads

 Samba's core is single threaded, only 1 outstanding read

system call by default

 Samba 3.6 forks helper processes

 4.0 spawns threads for higher performance

SerNetPossible future development

 Better metadata integration

 Share modes, leases

 ACLs (Claims based acls anyone?)

 NFS interoperability

 Locking grace period after node failure

 Support for better durable / persistent file handles

 File system needs to block file access while we're not

there

SerNet

21© 2013, SerNet GmbH

Kontakt

Volker Lendecke, VL@sernet.de

SerNet GmbH

Bahnhofsallee 1b Schützenstr. 18

37081 Göttingen 10117 Berlin

tel +49 551 370000-0 +49 30 5 779 779 0

fax +49 551 370000-9 +49 30 5 779 779 9

http://www.sernet.de

	Vortrag OOP 2012
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Kontakt

