
1
© 2014 IBM Corporation

GPFS performance session
Sven Oehme – oehmes@us.ibm.com

2
© 2014 IBM Corporation

L1 cache reference 1 ns

L2 cache reference 5 ns

Acquire/release mutex 100 ns

Main Memory reference 100 ns

Send 2k byte over verbs 10,000 ns

Send 2k bytes over 1 Gbps network 60,000 ns

Read 1 MB sequentially from Memory 250,000 ns

Read 1 MB sequentially from network 5,000,000 ns

Disk seek 10,000,000 ns

Read 1 MB sequentially from disk 20,000,000 ns

Send network packet from SJC,CA-> FRA,DE -> SJC,CA 150,000,000 ns

Latency numbers you NEED to know *Latency numbers you NEED to know *

*These numbers are rounded and don't claim to be 100% accurate

3
© 2014 IBM Corporation

Gigabit 100 MB/sec

10 Gbit 1,000 MB/sec

40 Gbit QDR IB 4,000 MB/sec

56 Gbit FDR IB 5,600 MB/sec

GEN-2 PCI Slot 3,000 MB/sec

GEN-3 PCI Slot 6,000 MB/sec

NL SAS drive 100% Seq Read/Write 100 MB/sec

NL SAS drive 100% 2MB Random Read/Write 75 MB/sec

SSD 100% Seq Read 300 MB/sec

SSD 100% Seq Write 200 MB/sec

Bandwidth numbers you NEED to know *Bandwidth numbers you NEED to know *

*These numbers are rounded and don't claim to be 100% accurate

4
© 2014 IBM Corporation

NL SAS drive 100% 4k Random iops 100

10k SAS drive 100% 4k Random iops 200

SSD 100% 4k random reads 20,000

SSD 100% 4k random writes 4,000

IOPS numbers you NEED to know *IOPS numbers you NEED to know *

*These numbers are rounded and don't claim to be 100% accurate

5
© 2014 IBM Corporation

How to collect a GPFS trace for performance analysisHow to collect a GPFS trace for performance analysis

GPFS 3.5 TL3 provides a new low overhead Tracing facility – in memory tracing
We had a in Memory tracing before, but it had still large overhead and was now replaced by a new technique

To set Cluster wide in Memory tracing, run :

mmtracectl --set --trace=def --tracedev-write-mode=overwrite --tracedev-overwrite-buffer-size=1g

You can now turn on tracing :

mmtracectl --start

Stop tracing, while leave the settings in place :

mmtracectl --stop

Or turn tracing off and reset to non in-memory tracing :

mmtracectl --off

6
© 2014 IBM Corporation

Analyze traces – create reportsAnalyze traces – create reports

As an exampled my traces are stored in /var/log/gpfstraces/
And my GPFS clone directory is /xcat/oehmes/gpfs-clone

Now run the following commands :

/xcat/oehmes/gpfs-clone/tools/trcio -W -T -F -L -d /var/log/gpfstraces/ -o trcio.output
Reading directory /var/log/gpfstraces
Found 1 files matching ['trcrpt.*']
Processing 1 of 1: trcrpt.130714.16.56.30.sonas04n1.gz
bad trace entry: Using invariant time cycle counter at 2499.996000Mhz to calculate timestamps
bad trace entry: Detected CPU running at 2435.000000 MHz at 1373833975.470050 (10381609864903222).
bad trace entry: Detected CPU running at 2435.000000 MHz at 1373833975.470059 (10381609864925144).
bad trace entry: Detected CPU running at 2499.000000 MHz at 1373835982.360727 (10386627083572363).
bad trace entry: Note that this is a change in CPU speed. (if prior TOD times are within a second of each
other this is a spurious error)
bad trace entry: Detected CPU running at 2498.000000 MHz at 1373835982.362344 (10386627087612460).
bad trace entry: Detected CPU running at 2499.000000 MHz at 1373841806.311670 (10401186937643757).
bad trace entry: Detected CPU running at 2396.000000 MHz at 1373841806.311677 (10401186937660535).
Writing trcio.output

7
© 2014 IBM Corporation

Analyze traces – look at the reportsAnalyze traces – look at the reports

Processed 1 trace files:
['0.000000', '13893.154279', 'trcrpt.130714.16.56.30.sonas04n1.gz']
Total elapsedTime: 13893.154 sec

Total Time Count Ops/sec --Time-per-operation-(milli-sec)-- -Cumul.-Med.
 (seconds) min avg 90% max (ms) pcnt
---------- ------ -------- ------- ------- ------- ------- ------------'
 2415.654 146023 10.5 0.037 16.543 23.771 150.453 18.346 36% read '*'
 606.029 33875 2.4 0.011 17.890 19.114 1407.950 22.622 4% send '*'
 30.767 983 0.1 0.039 31.299 99.342 227.816 99.340 10% write '*'
 16.758 1032 0.1 0.073 16.238 37.210 255.746 35.009 15% nsd '*'
 0.206 758 0.1 0.001 0.272 0.132 13.952 9.006 1% dmutx '*'
 0.156 5585 0.4 0.003 0.028 0.033 0.541 0.027 30% recv '*'
 0.017 36746 2.6 0.000 0.000 0.001 0.013 0.001 22% tsc '*'
 0.005 476 0.0 0.003 0.011 0.023 0.038 0.013 23% vnop '*'
 0.001 578 0.0 0.000 0.001 0.002 0.006 0.002 35% lock '*'

Total Time Count Ops/sec --Time-per-operation-(milli-sec)-- -Cumul.-Med.
 (seconds) min avg 90% max (ms) pcnt
---------- ------ -------- ------- ------- ------- ------- ------------
 1645.859 88177 6.3 0.712 18.665 24.245 115.608 19.345 40% read 'vdiskBuf'
 686.816 54824 3.9 0.037 12.528 19.139 150.453 15.294 32% read 'unknown'
 343.764 27898 2.0 0.022 12.322 19.428 93.996 15.429 31% send 'nspdMsgReadWrite'
 262.045 308 0.0 684.291 850.795 1384.841 1407.950 705.956 39% send 'nspdMsgDiscover'
 82.962 2976 0.2 19.182 27.877 33.172 100.497 27.288 43% read 'data'
 23.358 200 0.0 59.854 116.790 194.596 227.816 118.109 35% write 'data'
 16.758 1032 0.1 0.073 16.238 37.210 255.746 35.009 15% nsd 'processRequest'
 5.451 308 0.0 11.072 17.698 20.362 83.842 17.108 41% write 'vdiskEVLog2'
 0.746 369 0.0 0.040 2.023 0.113 57.654 26.016 2% write 'vdiskFWLog'
 0.706 35 0.0 17.121 20.176 20.518 25.195 20.281 48% write 'vdiskRGDesc'
 0.387 12 0.0 26.997 32.260 37.030 37.036 36.234 50% write 'logData'
 0.162 24 0.0 0.004 6.752 9.955 13.952 9.577 29% dmutx 'VBufFreeMutex <VdiskScrubWorkerThread>'
.....

8
© 2014 IBM Corporation

sdstat Plugin for GPFSsdstat Plugin for GPFS

With GPFS 3.5 PTF12 we will add a new sample code plugin for sdatst to the GPFS rpms on Linux

In the meanwhile who has access to the git repository can use it , files are :

./ts/util/dstat_gpfsops.py.dstat.0.6

./ts/util/dstat_gpfsops.py.dstat.0.7

The extension of the file (0.6 and 0.7) are for the 2 incompatible plugin versions of dstat.
0.6 will work on all older Linux version prior to RHEL 6.1 and version 0.7 will work on all newer versions

0.6 and 0.7 are the versions of dstat reported by dstat –version

The version of the plugin needs to be copied into /usr/share/dstat/ (on RHEL 6.X) and renamed to
dstat_gpfsops.py like

cp ./ts/util/dstat_gpfsops.py.dstat.0.7 /usr/share/dstat/dstat_gpfsops.py

After that you can add the plugin to the dstat output by running :

dstat -c -n -d -M gpfsops --nocolor

This will show cpu , network, disk and GPFS default stats on a single line at 1 second granularity

In order to enable vfs statistics you need to run :

mmfsadm vfsstats enable

On each node in the cluster (or add to mmfsup file in /vsr/mmfs/etc/)

9
© 2014 IBM Corporation

sdstat Plugin for GPFSsdstat Plugin for GPFS

 Dstat class to display selected gpfs performance counters returned by the
 mmpmon "vfs_s", "ioc_s", "vio_s", "vflush_s", and "lroc_s" commands.

 The set of counters displayed can be customized via environment variables:

 DSTAT_GPFS_WHAT

 Selects which of the five mmpmon commands to display.
 It is a comma separated list of any of the following:
 "vfs": show mmpmon "vfs_s" counters
 "ioc": show mmpmon "ioc_s" counters related to NSD client I/O
 "nsd": show mmpmon "ioc_s" counters related to NSD server I/O
 "vio": show mmpmon "vio_s" counters
 "vflush": show mmpmon "vflush_s" counters
 "lroc": show mmpmon "lroc_s" counters
 "all": equivalent to specifying all of the above

 Example:

 DSTAT_GPFS_WHAT=vfs,lroc dstat -M gpfsops

 will display counters for mmpmon "vfs_s" and "lroc" commands.

 The default setting is "vfs,ioc", i.e., by default only "vfs_s" and NSD
 client related "ioc_s" counters are displayed.

For more details on further customization see the dstats_gpfsops.py file

10
© 2014 IBM Corporation

sdstat Plugin for GPFSsdstat Plugin for GPFS

Just show VFS level Counters :

DSTAT_GPFS_WHAT=vfs dstat -c -n -d -M gpfsops --nocolor
WARNING: Option -M is deprecated, please use --gpfsops instead
/usr/bin/dstat:1672: DeprecationWarning: os.popen3 is deprecated. Use the subprocess module.
 pipes[cmd] = os.popen3(cmd, 't', 0)
----total-cpu-usage---- -net/total- -dsk/total- ---------------------------gpfs-vfs-ops--------------------------
usr sys idl wai hiq siq| recv send| read writ| cr del op/cl rd wr trunc fsync looku gattr sattr other
 0 0 98 1 0 0| 0 0 | 13M 45M| 0 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0| 990B 5434B| 0 0 | 0 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0| 740B 4996B| 0 0 | 0 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0| 684B 4590B| 0 16k| 0 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0| 628B 5012B| 0 0 | 0 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0| 916B 5346B| 0 60k| 0 0 0 0 0 0 0 0 0 0 0

Just show the vDISK counters :

DSTAT_GPFS_WHAT=vio dstat -c -n -d -M gpfsops --nocolor
WARNING: Option -M is deprecated, please use --gpfsops instead
/usr/bin/dstat:1672: DeprecationWarning: os.popen3 is deprecated. Use the subprocess module.
 pipes[cmd] = os.popen3(cmd, 't', 0)
----total-cpu-usage---- -net/total- -dsk/total- --------------------------gpfs-vio-------------------------
usr sys idl wai hiq siq| recv send| read writ|ClRea ClShW ClMdW ClPFT ClFTW FlUpW FlPFT Migrt Scrub LgWr
 0 0 98 1 0 0| 0 0 | 13M 45M| 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0|1454B 5986B| 0 0 | 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0| 564B 5170B| 0 0 | 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0| 684B 4900B| 0 0 | 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0| 864B 4654B| 0 0 | 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0| 740B 4980B| 0 64k| 0 0 0 0 0 0 0 0 0 0
 0 0 100 0 0 0| 680B 4574B| 0 0 | 0 0 0 0 0 0 0 0 0 0

11
© 2014 IBM Corporation

Perf top – Tool to find the high CPU contenderPerf top – Tool to find the high CPU contender

If you start perf top withou parameters, it gives you a top CPU consuming processes of the system in real
time and show a relative % compared to others.

 23.06% mmfsd [.] rsD10T2_8_9_low_vector_cksum(void**, CK64State*, int)

 16.42% mmfsd [.] rsD10T2_8_9_high_vector_cksum(void**, CK64State*, int)

 9.22% libmlx4-rdmav2.so [.] 0x0000000000003592

 3.27% [mmfslinux] [k] cxiGetPagePtrs

 2.82% [kernel] [k] _spin_lock_irqsave

 1.36% [kernel] [k] schedule

 1.21% [kernel] [k] _spin_unlock_irqrestore

 1.09% mmfsd [.] VTrackDesc::cleanBuffersAndBitmaps(VIORequest*)

 1.02% [kernel] [k] _spin_lock

 0.99% [kernel] [k] fget_light

 0.93% [mmfslinux] [k] cxiStartIO

 0.80% mmfsd [.] VDataBuf::vPrebuildBufferTrailer(int)

 0.73% mmfsd [.] NotGlobalMutexClass::acquire()

 0.72% mmfsd [.] Checksum16::calc16(void const*, int)

 0.63% [kernel] [k] fput

...

12
© 2014 IBM Corporation

Perf top – Tool to find the high CPU contenderPerf top – Tool to find the high CPU contender

You can further zoom into a process (in this example mmfsd) and see a breakdown of cpu chewing functions :

Samples: 269K of event 'cycles', Event count (approx.): 126730391715, Thread: mmfsd(344422), DSO: mmfsd

 39.51% [.] rsD10T2_8_9_low_vector_cksum(void**, CK64State*, int) < GNR checksum code
 28.37% [.] rsD10T2_8_9_high_vector_cksum(void**, CK64State*, int)
 1.92% [.] VTrackDesc::cleanBuffersAndBitmaps(VIORequest*)
 1.34% [.] VDataBuf::vPrebuildBufferTrailer(int)
 1.28% [.] NotGlobalMutexClass::acquire()
 1.25% [.] Checksum16::calc16(void const*, int)
 1.00% [.] VTrackDesc::buildBufferTrailers(BufBitmap const&, VDataBuf**)
 0.91% [.] IOBundle::queueIOBuffer(VDataBuf*, int, int, int)
 0.86% [.] VIORequest::performPromotedFTWrite()
 0.85% [.] verbs::verbsServer_i(int, RpcContext*, NodeAddr, int, unsigned int, int, int, nsdRdmaRmr_s*, int, iovec*, long long, long long)
 0.84% [.] VDataBuf::vGetDataAddrAtOffset(int, int) const
 0.82% [.] ChunkTab::findChunk(char*, unsigned long)
 0.81% [.] VDataBuf::vBuildBufferTrailer(int)
 0.77% [.] verbs::verbsDtoThread_i(int)
 0.74% [.] VDataBuf::vHold()
 0.69% [.] IncrementalChecksumState::ickAccumulate(void const*, int)
 0.66% [.] VTrackDesc::prepareToBuildTrailers(VIORequest*)
 0.66% [.] VTrackDesc::vtUpdateTrailerVersions(VIORequest*)
 0.66% [.] ThCond::wait(int, char const*)
 0.63% [.] VIORequest::vioReshapeFreeBuffers(int)
 0.63% [.] VMemHandle::mGetVAddr() const
 0.60% [.] VTrackDesc::vtProcessWriteIOBundleStatus(IOBundle*, VIORequest*, BufBitmap*)
...

13
© 2014 IBM Corporation

Performance dataPerformance data

A word of caution : The achieved numbers depends on the right Client configuration and
good Interconnect and can vary between environments. They should not be used in RFI's
as committed numbers, rather to demonstrate the technical capabilities of the Product
in good conditions

Non of the following Performance numbers should be reused for
sales or contract purposes.

Some of the numbers produced are a result of very advanced
tuning and while achievable, not very easy to recreate at customer
systems without the same level of effort

14
© 2014 IBM Corporation

Test SetupTest Setup

15 x3550-M3 Server each with
16 GB of Memory (6 gb Pagepool)
1 FDR Port
1 x 6 core CPU

1 GSS24/26 depending on the test.
2 FDR Ports connected per Server
GPFS 3.5.0.7 GA code level

Mellanox 32 Port FDR switch

4x15x

15
© 2014 IBM Corporation

Apply these numbers to practiceApply these numbers to practice

Creating a single 10 Gbyte File from one Client using a GEN-2 FDR IB card

/usr/local/bin/gpfsperf create seq -n 10G -r 8m /ibm/fs2-8m/test-10g-write
/usr/local/bin/gpfsperf create seq /ibm/fs2-8m/test-10g-write
 recSize 8M nBytes 10G fileSize 10G
 nProcesses 1 nThreadsPerProcess 1
 file cache flushed before test
 not using data shipping
 not using direct I/O
 offsets accessed will cycle through the same file segment
 not using shared memory buffer
 not releasing byte-range token after open
 no fsync at end of test
 Data rate was 3268199.54 Kbytes/sec, iops was 398.95, thread utilization 0.984
 Record size: 8388608 bytes, 10737418240 bytes to transfer, 10737418240 bytes transferred
 CPU utilization: user 3.68%, sys 3.87%, idle 92.45%, wait 0.00%

Why didn't it run at 5.6 GB/sec ? GEN – 2

16
© 2014 IBM Corporation

Apply these numbers to practiceApply these numbers to practice

Reading a single block random from this 10 Gbyte File while it is not cached anymore

/usr/local/bin/gpfsperf read rand -n 8m -r 8m /ibm/fs2-8m/test-10g-write
/usr/local/bin/gpfsperf read rand /ibm/fs2-8m/test-10g-write
 recSize 8M nBytes 8M fileSize 10G
 nProcesses 1 nThreadsPerProcess 1
 file cache flushed before test
 not using data shipping
 not using direct I/O
 offsets accessed will cycle through the same file segment
 not using shared memory buffer
 not releasing byte-range token after open
 Data rate was 220322.52 Kbytes/sec, iops was 26.89, thread utilization 0.989
 Record size: 8388608 bytes, 8388608 bytes to transfer, 8388608 bytes transferred
 CPU utilization: user 0.00%, sys 0.00%, idle 100.00%, wait 0.00%
[root@clients.sonascl16 mpi]# mmdiag --iohist

=== mmdiag: iohist ===

I/O history:

 I/O start time RW Buf type disk:sectorNum nSec time ms Type Device/NSD ID NSD server
--------------- -- ----------- ----------------- ----- ------- ---- ------------------ ---------------
10:04:45.979047 R data 10:40527921152 16384 33.646 cli C0A70402:51E1B12C 192.167.4.2

17
© 2014 IBM Corporation

Apply these numbers to practiceApply these numbers to practice

Reading 8 blocks sequentially from this 10 Gbyte File while it is not cached anymore

/usr/local/bin/gpfsperf read seq -n 64m -r 8m /ibm/fs2-8m/test-10g-write
/usr/local/bin/gpfsperf read seq /ibm/fs2-8m/test-10g-write
 recSize 8M nBytes 64M fileSize 10G
 nProcesses 1 nThreadsPerProcess 1
 file cache flushed before test
 not using data shipping
 not using direct I/O
 offsets accessed will cycle through the same file segment
 not using shared memory buffer
 not releasing byte-range token after open
 Data rate was 533933.24 Kbytes/sec, iops was 65.18, thread utilization 0.901
 Record size: 8388608 bytes, 67108864 bytes to transfer, 67108864 bytes transferred
 CPU utilization: user 0.68%, sys 0.68%, idle 98.64%, wait 0.00%
[root@clients.sonascl16 mpi]# mmdiag --iohist

=== mmdiag: iohist ===

I/O history:

 I/O start time RW Buf type disk:sectorNum nSec time ms Type Device/NSD ID NSD server
--------------- -- ----------- ----------------- ----- ------- ---- ------------------ ---------------
10:06:24.664878 R data 11:69057658880 16384 27.807 cli C0A70402:51E1B12D 192.167.4.2
10:06:24.664878 R data 10:81416355840 16384 34.372 cli C0A70402:51E1B12C 192.167.4.2
10:06:24.704199 R data 7:153683312640 16384 26.884 cli C0A70401:51E1B11C 192.167.4.1
10:06:24.701967 R data 12:155233386496 16384 32.577 cli C0A70402:51E1B12E 192.167.4.2
10:06:24.704210 R data 8:86150365184 16384 32.199 cli C0A70401:51E1B11D 192.167.4.1
10:06:24.737230 R data 9:170315186176 16384 30.527 cli C0A70401:51E1B11E 192.167.4.1
10:06:24.741580 R data 8:71319928832 16384 30.542 cli C0A70401:51E1B11D 192.167.4.1
10:06:24.737237 R data 10:144131506176 16384 37.358 cli C0A70402:51E1B12C 192.167.4.2
10:06:24.739233 R data 12:9777807360 16384 36.375 cli C0A70402:51E1B12E 192.167.4.2
10:06:24.739203 R data 11:91428995072 16384 37.607 cli C0A70402:51E1B12D 192.167.4.2
10:06:24.741588 R data 7:171111170048 16384 40.440 cli C0A70401:51E1B11C 192.167.4.1

18
© 2014 IBM Corporation

Apply these numbers to practiceApply these numbers to practice

Reading 8 blocks sequentially from this 10 Gbyte File while it is STILL cached

/usr/local/bin/gpfsperf read seq -n 64m -r 8m /ibm/fs2-8m/test-10g-write
/usr/local/bin/gpfsperf read seq /ibm/fs2-8m/test-10g-write
 recSize 8M nBytes 64M fileSize 10G
 nProcesses 1 nThreadsPerProcess 1
 file cache flushed before test
 not using data shipping
 not using direct I/O
 offsets accessed will cycle through the same file segment
 not using shared memory buffer
 not releasing byte-range token after open
 Data rate was 3286165.76 Kbytes/sec, iops was 401.14, thread utilization 0.980
 Record size: 8388608 bytes, 67108864 bytes to transfer, 67108864 bytes transferred
 CPU utilization: user 0.00%, sys 4.08%, idle 95.92%, wait 0.00%
[root@clients.sonascl16 mpi]# mmdiag --iohist

=== mmdiag: iohist ===

I/O history:

 I/O start time RW Buf type disk:sectorNum nSec time ms Type Device/NSD ID NSD server
--------------- -- ----------- ----------------- ----- ------- ---- ------------------ ---------------

19
© 2014 IBM Corporation

Apply these numbers to practiceApply these numbers to practice

Reading the whole file sequentially

/usr/local/bin/gpfsperf read seq -n 10g -r 8m /ibm/fs2-8m/test-10g-write
/usr/local/bin/gpfsperf read seq /ibm/fs2-8m/test-10g-write
 recSize 8M nBytes 10G fileSize 10G
 nProcesses 1 nThreadsPerProcess 1
 file cache flushed before test
 not using data shipping
 not using direct I/O
 offsets accessed will cycle through the same file segment
 not using shared memory buffer
 not releasing byte-range token after open
 Data rate was 2330376.56 Kbytes/sec, iops was 284.47, thread utilization 1.000
 Record size: 8388608 bytes, 10737418240 bytes to transfer, 10737418240 bytes transferred
 CPU utilization: user 3.01%, sys 3.24%, idle 93.75%, wait 0.00%

=== mmdiag: iohist ===

I/O history:

 I/O start time RW Buf type disk:sectorNum nSec time ms Type Device/NSD ID NSD server
--------------- -- ----------- ----------------- ----- ------- ---- ------------------ ---------------
10:34:02.345925 R data 8:167131250688 16384 34.668 cli C0A70401:51E1B11D 192.167.4.1
10:34:02.345925 R data 9:107683823616 16384 37.434 cli C0A70401:51E1B11E 192.167.4.1
10:34:02.387112 R data 11:69057658880 16384 30.356 cli C0A70402:51E1B12D 192.167.4.2
10:34:02.384108 R data 10:81416355840 16384 35.265 cli C0A70402:51E1B12C 192.167.4.2
10:34:02.387031 R data 12:155233386496 16384 34.376 cli C0A70402:51E1B12E 192.167.4.2
10:34:02.422283 R data 8:86150365184 16384 31.123 cli C0A70401:51E1B11D 192.167.4.1
10:34:02.424731 R data 10:144131506176 16384 29.495 cli C0A70402:51E1B12C 192.167.4.2
10:34:02.422251 R data 7:153683312640 16384 32.435 cli C0A70401:51E1B11C 192.167.4.1
10:34:02.424731 R data 9:170315186176 16384 34.049 cli C0A70401:51E1B11E 192.167.4.1
.....

20
© 2014 IBM Corporation

Apply these numbers to practiceApply these numbers to practice

See that the data was prefetched which is why the response time per request is lower :

mmfsadm dump iohist

I/O history:

 I/O start time RW Buf type disk:sectorNum nSec time ms tag1 tag2 Disk UID typ
 NSD server context thread
--------------- -- ----------- ----------------- ----- ------- --------- --------- ------------------ ---
--------------- --------- ----------
10:34:47.148582 R data 9:107683823616 16384 30.611 2295808 1 C0A70401:51E1B130 cli
 192.167.4.1 Prefetch PrefetchWorkerThread
10:34:47.148590 R data 8:167131250688 16384 51.180 2295808 0 C0A70401:51E1B12A cli
 192.167.4.1 MBHandler FileBlockReadFetchHandlerThread
10:34:47.204880 R data 11:69057658880 16384 27.887 2295808 3 C0A70401:51E1B12D cli
 192.167.4.2 Prefetch PrefetchWorkerThread
10:34:47.202549 R data 10:81416355840 16384 36.348 2295808 2 C0A70401:51E1B12E cli
 192.167.4.2 Prefetch PrefetchWorkerThread
10:34:47.204888 R data 12:155233386496 16384 34.017 2295808 4 C0A70401:51E1B12C cli
 192.167.4.2 Prefetch PrefetchWorkerThread
10:34:47.244035 R data 10:144131506176 16384 32.866 2295808 8 C0A70401:51E1B12E cli
 192.167.4.2 Prefetch PrefetchWorkerThread
10:34:47.241839 R data 7:153683312640 16384 35.732 2295808 5 C0A70401:51E1B128 cli
 192.167.4.1 Prefetch PrefetchWorkerThread
10:34:47.241839 R data 8:86150365184 16384 37.547 2295808 6 C0A70401:51E1B12A cli
 192.167.4.1 Prefetch PrefetchWorkerThread
10:34:47.246567 R data 12:9777807360 16384 33.634 2295808 10 C0A70401:51E1B12C cli
 192.167.4.2 Prefetch PrefetchWorkerThread
10:34:47.246567 R data 11:91428995072 16384 36.871 2295808 9 C0A70401:51E1B12D cli
 192.167.4.2 Prefetch PrefetchWorkerThread
10:34:47.243946 R data 9:170315186176 16384 43.591 2295808 7 C0A70401:51E1B130 cli
 192.167.4.1 Prefetch PrefetchWorkerThread

21
© 2014 IBM Corporation

BenchmarkBenchmark executionexecution andand resultsresults

Operation 1m 4m 16m

GSS26-write (MB/sec) 3957.30 11302.19 14970.40

GSS26-read (MB/sec) 6987.58 13915.36 15193.71

GSS24-write (MB/sec) 3023.23 7799.26 11148.37

GSS24-read (MB/sec) 4987.02 9515.66 13875.70

ior ­i 2 ­p ­d 10 ­w ­r ­e ­t 16m ­b 32G ­o /ibm/fs2­16m/shared/ior//iorfile

­i N repetitions ­­ number of repetitions of test
­d N interTestDelay ­­ delay between reps in seconds
­w writeFile ­­ write file
­r readFile ­­ read existing file
­e fsync ­­ perform fsync upon POSIX write close
­t N transferSize ­­ size of transfer in bytes (e.g.: 8, 4k, 2m, 1g)
­b N blockSize ­­ contiguous bytes to write per task (e.g.: 8, 4k, 2m, 1g)
­o S testFile ­­ full name for test

A word of caution : The achieved numbers depends on the right Client
configuration and good Interconnect and can vary between environments. They
should not be used in RFI's as committed numbers, rather to demonstrate the
technical capabilities of the Product in good conditions

22
© 2014 IBM Corporation

ReadRead BenchmarkBenchmark

A word of caution : The achieved numbers depends on the right Client
configuration and good Interconnect and can vary between environments. They
should not be used in RFI's as committed numbers, rather to demonstrate the
technical capabilities of the Product in good conditions

23
© 2014 IBM Corporation

Write BenchmarkWrite Benchmark

A word of caution : The achieved numbers depends on the right Client
configuration and good Interconnect and can vary between environments. They
should not be used in RFI's as committed numbers, rather to demonstrate the
technical capabilities of the Product in good conditions

24
© 2014 IBM Corporation

GPFS Parameters explainedGPFS Parameters explained

General Parameter

Modern Servers have multiple Memory regions that are attached to a given socket. by default Linux
allocates data for a given process from only 1 NUMA Region This Parameter tells GPFS to round robin
across all regions to not run into a out of memory condition when you reached the limit of one of
the regions while the remaining still have plenty of memory left.
mmchconfig numaMemoryInterleave=yes

page pool defines the amount of physical memory that should be pinned by GPFS at startup. it is
used in various places of the code, but from a Performance perspective its required to cache data
and metadata objects (indirect blocks, directory blocks).
mmchconfig pagepool=38g

Defines the maximum number of Bufferdescriptors. for data block (full block or fragment)or
directory block you want to hold in the cache you need to have exactly 1
mmchconfig maxBufferDescs=2m

Percentage of page pool used for file prefetching needs to be less than the default of 20% since
most of the page pool was given to GNR.
mmchconfig prefetchPct=5

Allow largest possible GPFS block size and GNR vdisk track size
mmchconfig maxblocksize=16m

Number of recent IOs whose target address and response times are recorded. Default 512.
mmchconfig ioHistorySize=64k

defines no of Multiclass / Non-critical worker threads to be started
mmchconfig maxGeneralThreads=1280

maxMBpS affects the depth of prefetching for sequential file access. It should be set at least as
large as the maximum expected hardware bandwidth.
mmchconfig maxMBpS=16000

25
© 2014 IBM Corporation

GPFS Parameters explainedGPFS Parameters explained

Housekeeping / cache related settings

syncIntervalStrict defines if we should only follow the syncInterval (default 30) value rather than
the main interval of the OS triggered sync , which happens on linux every 5 seconds. this has a
very big positive impact on workloads with buffered writes.
mmchconfig syncIntervalStrict=yes

These are all about cleaning "files" so OpenFile objects can be stolen and re-used. To steal an
OpenFile object the whole file (data & metadata) must be flushed.
flushedDataTarget: no of OpenFile objects where data have been flushed already
flushedInodeTarget: no of OpenFile objects where data & metadata have been flushed
maxFileCleaners: no threads flushing data and/or metada
mmchconfig flushedDataTarget=1024
mmchconfig flushedInodeTarget=1024
mmchconfig maxFileCleaners=1024

These are cleaning data buffers, so sync doesn't have to flush data blocks
mmchconfig maxBufferCleaners=1024

Number of GPFS log buffers. Having lots of these allows the log to absorb bursts of log appends.
For systems with large page pools (1 G or more), log buffers are the size of the metadata block
size, and there is a separate set of such buffers for each file system. Default 3.
mmchconfig logBufferCount=20

GPFS log flush controls. When the log becomes logWrapThresholdPct, the log flush code is activated
to flush dirty objects so the log records that describe their updates can be discarded. This
percentage defaults to 50%, and although there is some code to allow changing it, modifying this
value is not supported by mmchconfig. Log wrap will start logWrapThreads flush threads (default
8), which will flush enough dirty objects so the recovery start position can be moved forward by
logWrapAmountPct percent (default 10%).
mmchconfig logWrapAmountPct=2
mmchconfig logWrapThreads=128

26
© 2014 IBM Corporation

GPFS Parameters explainedGPFS Parameters explained

Number of active allocation regions for disk allocation. Larger numbers can improve allocation
performance, but high numbers should not be used for large clusters. Default is 4.
mmchconfig maxAllocRegionsPerNode=32

Size of the pool of threads that completes file deletions in the background. Default is 4.
mmchconfig maxBackgroundDeletionThreads=16

Maximum number of threads that prefetch inode tokens of deleted files to speed up file creates.
Default is 8.
mmchconfig maxInodeDeallocPrefetch=128

Maximum number of simultaneous local GPFS requests. Default 48.
mmchconfig worker1Threads=1024

maxFilesToCache should be set fairly large to assist with local workload. It can be set very
large in small client clusters, but should remain small on clients in large clusters to avoid
excessive memory use on the token servers. The stat cache is not effective on Linux, so it
should always be small.
mmchconfig maxFilesToCache=128k
mmchconfig maxStatCache=512

Maximum number of threads that prefetch inode tokens of deleted files to speed up file creates.
Default is 8.
mmchconfig maxInodeDeallocPrefetch=128

Pre-steal some page pool space to reduce the latency of acquiring a free buffer.preStealCount is
the option to specify a hard number vs Pct. the way it works is if set to 10000 , 5000 go to
32k, 2500 to 16k, 1250 to 8k ,
mmchconfig preStealCount=1000
mmchconfig preStealPct=1

27
© 2014 IBM Corporation

GPFS Parameters explainedGPFS Parameters explained

syncBackgroundThreads define how many threads in parallel are allowed to run to flush data
during regular sync intervals. Default 16.
syncWorkerThreads no of threads in parallele to flush data during explicit sync (sync command,
or crsnapshot, or unmount, ...)
mmchconfig syncBackgroundThreads=64
mmchconfig syncWorkerThreads=256

These Settings influence the inode Prefetch behaviour for "ls -l"
InodePrefectFirstDirblock set to "yes" to have inode prefetch read the first block of each
subdir as well. Defaults to no.
InodePrefetchThreshold defines how many stat's we wait for before start prefetching inodes,
default is 5, make it smaller to start inode prefetch sooner.
InodePrefetchWindow define how close together in time the stat's have to be to trigger inode
prefetch, default is 0.5 seconds which means the 5 stat's all have to within half a second of
each other, otherwise we'll ignore them. you need to make it larger to trigger inode prefetch
even if stat's are coming in more slowly units are in milli seconds.
e.g., setting it to 2500 will make the window be 2.5 seconds
mmchconfig InodePrefectFirstDirblock=yes
mmchconfig InodePrefetchThreshold=5
mmchconfig InodePrefetchWindow=500

General number of inode prefetch threads to use. Default 8.
mmchconfig worker3Threads=32

pitWorkerThreadsPerNode specify how much threads do restripe, data movement, etc ...
Default is threadsPerNode = MIN(16, (numberOfDisks * 4)/numberOfNodes + 1)) so 16, or less if
there are fewer than about four LUNs
mmchconfig pitWorkerThreadsPerNode=16

28
© 2014 IBM Corporation

GPFS Parameters explainedGPFS Parameters explained

PrefetchAggressiveness defines how aggressive to prefetch data
0 means never prefetch
1 means prefetch on 2nd access if sequential
2 means prefetch on 1st access at offset 0 or 2nd sequential access anywhere else
3 means prefetch on 1st access anywhere
In 3.3, the default was 3 (prefetchOnFirstAccess), which means it would always prefetch
immediately, even if the first access is in the middle of the file.
In GPFS 3.4, the default is 2 (prefetchNormal), which means if you start reading at the
beginning of the file, it will start prefetching immediately, but if you start reading
somewhere in the middle of the file, it waits until the second read to confirm that the access
is sequential before it starts prefetching. With the setting of 1 (prefetchOnSecondAccess), it
will wait for a second read, even if the first read was at the beginning of the file.
since 3.5 you can specify read and write aggressiveness independent.
mmchconfig prefetchAggressiveness=2
mmchconfig prefetchAggressivenessRead=-1
mmchconfig prefetchAggressivenessWrite=-1

ignorePrefetchLUNCount tells the NSD client to not limit the numbers of requests based on the
number of visible LUN's (as they can have a large number of physical disks behind them) and
rather limit by the max to number of buffers and prefetch threads.Defaults to no
mmchconfig ignorePrefetchLUNCount=yes

29
© 2014 IBM Corporation

GPFS Parameters explainedGPFS Parameters explained

Communication Related Parameter

tscWorkerPool defines no of threads per class of receive workers
mmchconfig tscWorkerPool=64

nsdInlineWriteMax defines the maximum allowed single io size to use Inline writes.Defaults to 1k
mmchconfig nsdInlineWriteMax=32k

This needs to be set larger than the default for server nodes that may have connections to many
clients, since it indirectly controls the number of TCP connections managed by each receiver
thread.
mmchconfig maxReceiverThreads=32

RDMA Port configuration
mmchconfig verbsPorts='mlx4_0/1 mlx4_0/2 mlx4_1/1 mlx4_1/2'

enable RDMA in general, if this is set to disable all RDMA communication is shut off
mmchconfig verbsRdma=enable

defines minimum size of a Packet to use RDMA , also see nsdInlineWriteMax
mmchconfig verbsRdmaMinBytes=16k

Turns verbsSend on, a low level IB inline transfer method
mmchconfig verbsRdmaSend=yes

Max number of outstanding transfers at a time per connection
mmchconfig verbsRdmasPerConnection=256

Max number of outstanding transfers at a time for the entire node
mmchconfig verbsRdmasPerNode=1024

How much dedicated PAgepool for verbs communication
mmchconfig verbsSendBufferMemoryMB=1024

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

