CLIMB, OpenStack & GPFS

Elastic Storage

Simon Thompson
Research Computing Team
University of Birmingham, England, UK
University of Birmingham

- Research intensive University
- ~19000 Undergraduate Students
- ~6400 Postgraduate Taught
- ~2900 Postgraduate Research
- £145.5 million (~$230 million) in research income (2011-12)

Data for 2011/2012 academic session
CLIMB Project

• Funded by Medical Research Council (MRC)
• Four partner Universities
 – Birmingham
 – Cardiff
 – Swansea
 – Warwick
• ~£8m (~$13M) grant
• Private cloud, running 1000 VMs over 4 sites
The CLIMB Consortium

• Professor Mark Pallen (Warwick) and Dr Sam Sheppard (Swansea) – Joint PIs

• Professor Mark Achtman (Warwick), Professor Steve Busby FRS (Birmingham), Dr Tom Connor (Cardiff)*, Professor Tim Walsh (Cardiff), Dr Robin Howe (Public Health Wales) – Co-Is

• Dr Nick Loman (Birmingham)* and Dr Chris Quince (Warwick) ; MRC Research Fellows

* Principal bioinformaticians architecting and designing the system
The CLIMB Consortium

• Professor Mark Pallen (Warwick) and Dr Sam Sheppard (Swansea) – Joint PIs

• Professor Mark Achtman (Warwick), Professor Steve Busby FRS (Birmingham), Dr Tom Connor (Cardiff)*, Professor Tim Walsh (Cardiff), Dr Robin Howe (Public Health Wales) – Co-Is

• Dr Nick Loman (Birmingham)* and Dr Chris Quince (Warwick) ; MRC Research Fellows

* Principal bioinformaticians architecting and designing the system
CLIMB

• Separate OpenStack region per site
• Federated single gateway to access
• Local GPFS high performance
 – ~0.5PB per site
• CEPH storage cluster replicated across sites
 – For archive of VMs
 – Between 2-5PB total usable over 4 sites
CLIMB Overview

Janet – UK Academic Network

Birmingham region
- local controller nodes
- local network nodes
 - local GPFS
 - replicated CEPH storage

Cardiff region
- local controller nodes
- local network nodes
 - local GPFS
 - replicated CEPH storage

Warwick region
- local controller nodes
- local network nodes
 - local GPFS
 - replicated CEPH storage

Swansea region
- local controller nodes
- local network nodes
 - local GPFS
 - replicated CEPH storage
Our stack

• GPFS 4.1.0 PTF 3
• Scientific Linux 6.5
• Openstack Icehouse release (Redhat RDO)

• Mellanox FDR-14 IB
• Mellanox 40GbE Ethernet
• IBM (Lenovo?!) System X hardware
• Brocade VDX 10/40GbE switches
Block size alignment

• V3700 – 256KB strip by default
• = 2MB stripes (8+2P raid sets)
• Data sets are likely to be large (100GB?), or storing VM images
• 4KB inodes allow small files to be stored in inode
• 8MB blocks
File-system considerations

• Pre-allocate large number of inodes
• pagepool – 30-50% of node memory
• maxFilesToCache
• maxStatCache (4x maxFilesToCache)
• seqDiscardThreshold
GPFS magic sauce & OpenStack

• Swift
 – Object storage
• Glance
 – Image service (where we store VM images)
• Cinder
 – Volume (block disk service)
• Nova compute
 – The bit that runs on the Hypervisor servers
Swift (object storage)

- Runs directly on GPFS servers
- Clients connect to swift via API
- Shared file-system so no need to replicate objects between glance nodes
- Use a separate file-set for swift
Swift

• There’s an IBM red paper on it
 – Set object replication at 1 (GPFS provides access and replication if needed)
 – Set replication factor of account/container rings at 2 or 3
 – 10 vdevices per swift node
 – Pre-allocate inodes for performance (we have 200M inodes allocated)
 – Don’t use GPFS ACLs or Quotas
Glance (image service)

- Share file-set with Cinder
- Set in both glance-api and glance-cache:
 - `filesystem_store_datadir = /climb/openstack-data/store`
 - `default_store = file`
- Ensure you have `glance.store.filesystem.Store` in `known_stores`
- Ensure that the directory is writable!
Cinder (Volume service)

- GPFS driver for Cinder in OpenStack
- Allows glance image provision by GPFS snapshot
- Copy on write
Nova compute

- Point Nova compute at GPFS
- It’s a shared file-system so can live migrate
 - Horizon confused about space
- Normal GPFS storage so can use RDMA
- Will LROC improve performance here?
What would be nice?

- Direct access to GPFS file-system from VMs
 - VirtIO with KVM? OpenStack support?
 - GPFS client? … but how would it network
 - UID mapping?
Future GPFS work

• Tune GPFS environment – any thoughts?
• Add local SSDs to enable LROC for nova-compute nodes?
• AFM to replicate glance across sites
• Integrate OpenStack environment with GPFS and CEPH storage
GPFS @UoB

- BlueBEAR – Linux HPC running over FDR-10
- Research Data Store – multi-data centre, replicated, HA failover system for bulk data for research projects
- Hadoop?
More Info/Contact

• Me: S.J.Thompson@bham.ac.uk
• www.roamingzebra.co.uk (shameless blog plug)
• Project: www.climb.ac.uk
• Twitter: @MRCCLimb