NCAR Globally Accessible User Environment

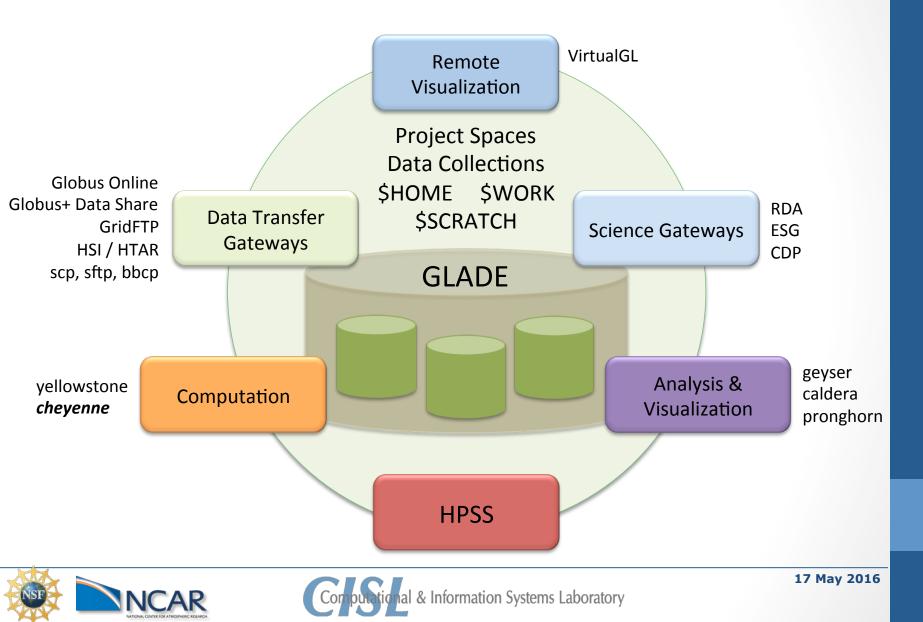
Spectrum Scale User Group – UK Meeting 17 May 2016 Pamela Hill, Manager, Data Analysis Services

Data Analysis Services Group NCAR/CISL/HSS/DASG

- Data Transfer and Storage Services
 - Pamela Hill
 - Joey Mendoza
 - Craig Ruff
- High-Performance File Systems
- Data Transfer Protocols
- Science Gateway Support
- Innovative I/O Solutions

- Visualization Services
 - John Clyne
 - Scott Pearse
 - Alan Norton
- VAPOR development and support
- 3D visualization
- Visualization User Support

GLADE Mission

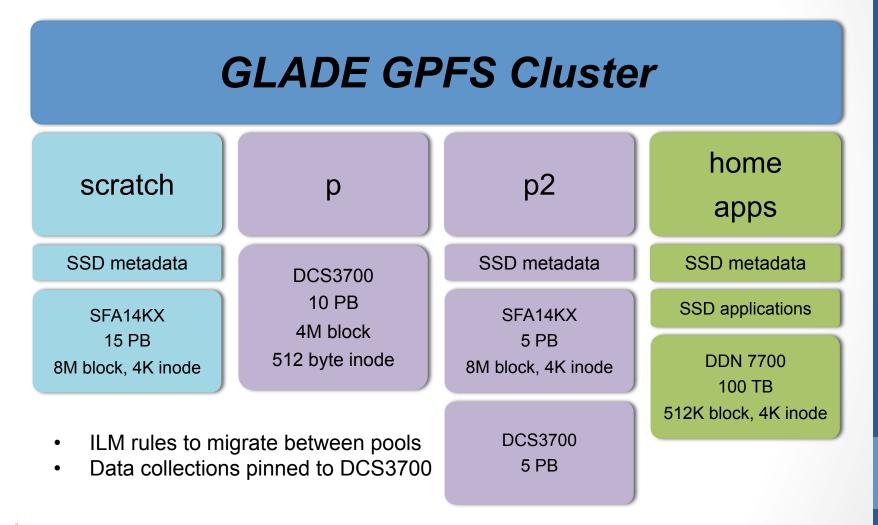

GLobally Accessible Data Environment

- Unified and consistent data environment for NCAR HPC
 - Supercomputers, Data Analysis and Visualization Clusters
 - Support for project work spaces
 - Support for shared data transfer interfaces
 - Support for Science Gateways and access to RDA & ESG data sets
- Data is available at high bandwidth to any server or supercomputer within the GLADE environment
- Resources outside the environment can manipulate data using common interfaces
- Choice of interfaces supports current projects; platform is flexible to support future projects

GLADE Environment

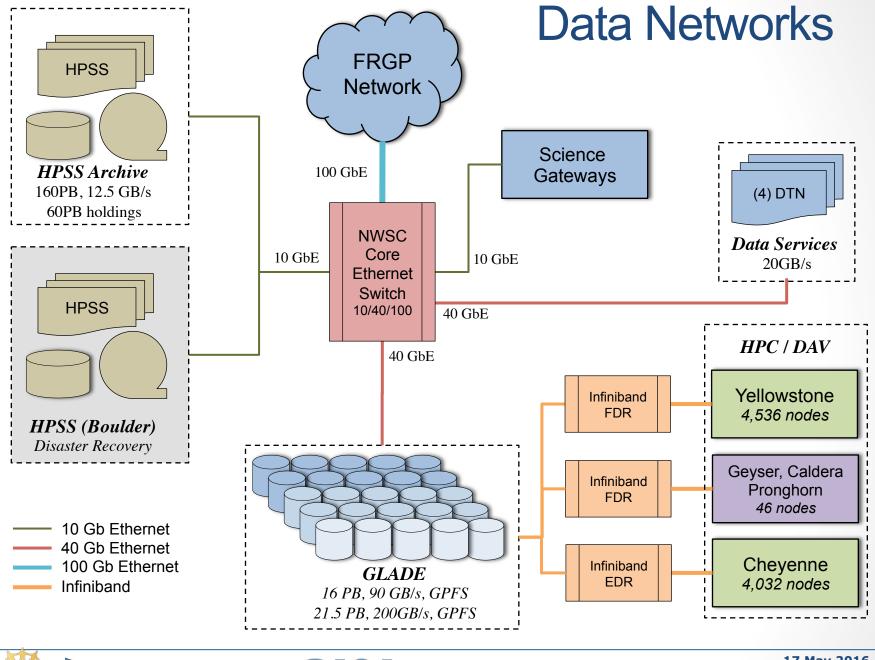
GLADE Today

- 90 GB/s bandwidth
- 16 PB useable capacity
- 76 IBM DCS3700
- 6840 3TB drives
 - shared data + metadata
- 20 GPFS NSD servers
- 6 management nodes
- File Services
 - FDR
 - 10 GbE


Expansion Fall 2016

- 200 GB/s bandwidth
- ~21.5 PB useable capacity
- 4 DDN SFA14KX
- 3360 8TB drives
 - data only
- 48 800GB SSD
 - Metadata
- 24 GPFS NSD servers
- File Services
 - EDR
 - 40 GbE

GLADE File System Structure

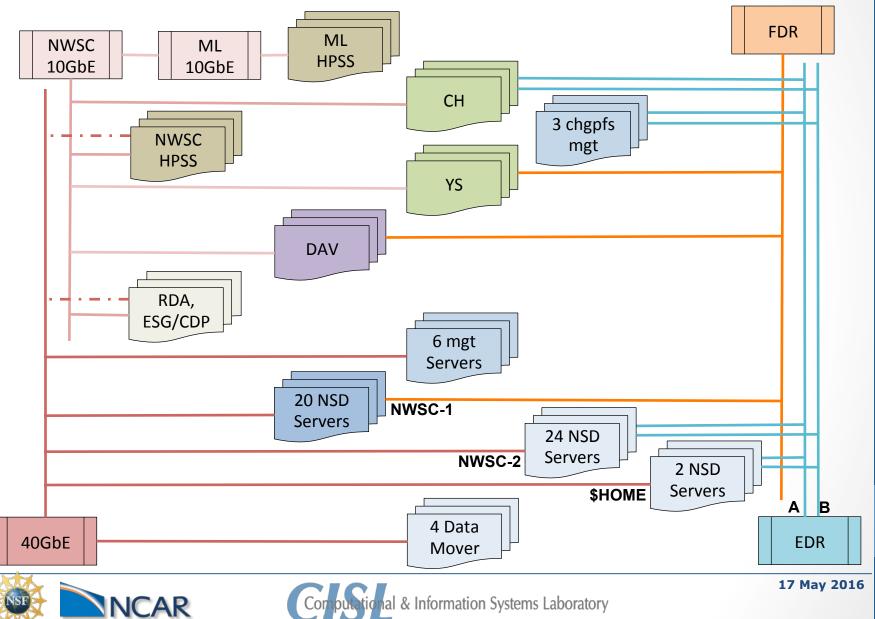


GLADE I/O Network

- Network architecture providing global access to data storage from multiple HPC resources
- Flexibility provided by support of multiple connectivity options and multiple compute network topologies
 - 10GbE, 40GbE, FDR, EDR
 - Full Fat Tree, Quasi Fat Tree, Hypercube
- Scalability allows for addition of new HPC or storage resources
- Agnostic with respect to vendor and file system
- Can support multiple solutions simultaneously

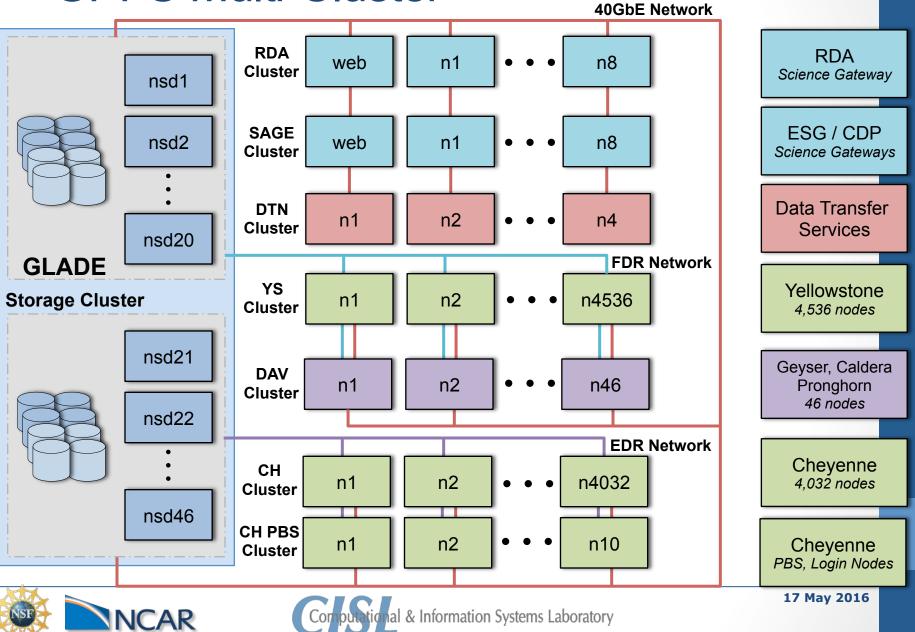
Computational & Information Systems Laboratory

NCAR


GLADE I/O Network Connections

- All NSD servers are connected to 40GbE network
- Some NSD servers are connected to the FDR IB network
 - Yellowstone is a full fat tree network
 - Geyser/Caldera/Pronghorn quasi fat tree, up/dwn routing
 - NSD servers are up/dwn routing
- Some NSD servers are connected to the EDR IB network
 - Cheyenne is an enhanced hypercube
 - NSD servers are nodes in the hypercube
 - Each NSD server is connected to two points in the hypercube
- Data transfer gateways, RDA, ESG and CDP science gateways are connected to 40GbE and 10GbE networks
- NSD servers will route traffic over the 40GbE network to serve data to both IB networks

HPC Network Architecture


GPFS Multi-Cluster

- Clusters can serve file systems or be diskless
- Each cluster is managed separately
 - can have different administrative domains
- Each storage cluster controls who has access to which file systems
- Any cluster mounting a file system must have TCP/IP access from all nodes to the storage cluster
- Diskless clusters only need TCP/IP access to the storage cluster hosting the file system they wish to mount
 - No need for access to other diskless clusters
- Each cluster is configured with a GPFS subnet which allows NSD servers in the storage cluster to act as routers
 - Allows blocking of a subnet when necessary
- User names and group need to be sync'd across the multicluster domain

GPFS Multi-Cluster

hal

Con

NCARP – Requirements

- Must provide IP routing between Infiniband-only GPFS clients and Ethernet-only GPFS servers.
 - Some GPFS protocol traffic is always carried over IP, even if RDMA is used for I/O
 - All GPFS protocol traffic can be carried over IP if necessary
- Need high availability of the virtual router addresses (VRAs) to provide the clients uninterrupted file system access
 - Routine maintenance
 - Unattended automatic VRA failure recovery
 - Use gratuitous ARP to reduce fail over time
 - Actively detect network interface failures
 - Use digital signatures for valid message detection and spoofing rejection

NCARP – Requirements

The NCAR Common Address Redundancy Protocol

- Make use of existing hardware where possible
 - Current need is for 1 year, then all NSD servers migrate to the EDR Hypercube network
- Be scalable if client cluster requirements change
 - Phase in/phase out of client clusters and cluster membership over time
 - There are thousands of client nodes in multiple clusters
 - Each router node has limited bandwidth available
 - IP over IB throughput is the limiting issue in testing
 - Partition nodes among the routers
 - Allows a measure of load balancing
 - Reduce the number of static rules in the Linux kernel routing table
 - Usable for both servers and clients

NCARP – Requirements

- Must run on subnets managed by the organization's Networking Group as well as on the cluster private I/O networks.
 - Must not collide with Virtual Router Redundancy Protocol (VRRP) on the organization's subnets.
 - Must not appear as general purpose routers for non-GPFS traffic.
 - Will not support MPI job traffic
- Use a common configuration description for all participating networks and routers.

NCARP

- NCAR Common Address Redundancy Protocol
- Based loosely on the BSD Common Address Redundancy Protocol (CARP)
- Reduce the number of NCARP packets traversing the networks to keep overhead lower
- Each node should handle a primary Virtual Router Address (VRA) and some number of secondary VRAs
- Use the node's load input when deciding to assume mastership of a secondary VRA.

NCARP – Deployment Strategy

- Deploy NCARP on existing NSD server nodes.
 - CPUs usually mostly idle even under file I/O load
 - Spare memory and PCI bandwidth available
- Deploy dedicated inexpensive router nodes if bandwidth insufficient or impacts GPFS too much.
- Use 40G (or 100G) Ethernet as the interchange network between the router nodes and the GPFS servers.
 - Insulates us from IB dependencies and restrictions
 - Have to have this network anyway for non-IB attached GPFS clusters.

pjg@ucar.edu

QUESTIONS?

