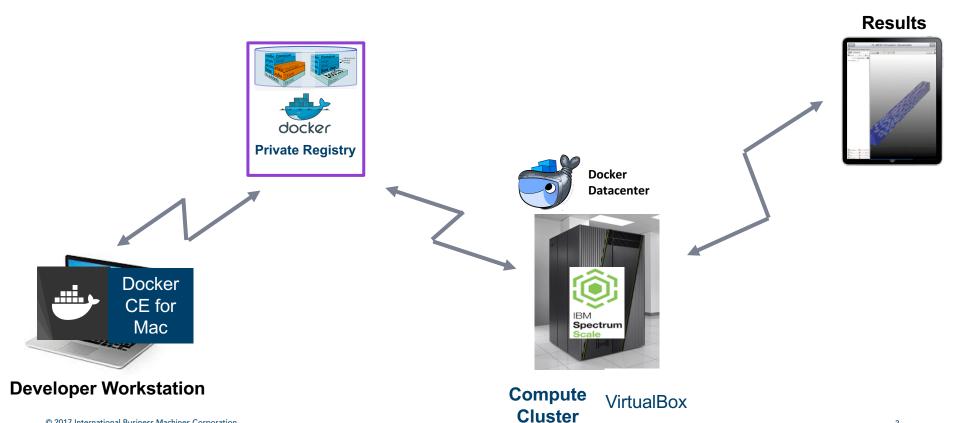

Spectrum Scale and Containers

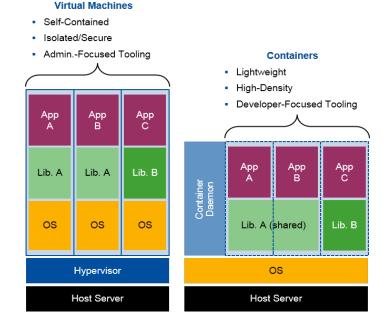
Sandeep Gopisetty, Heiko Ludwig, Mohamed Mohamed, Robert Engel Cloud Systems Research – Almaden

<u>Dean Hildebrand</u>, Amit Warke Cloud Storage Software Research – Almaden



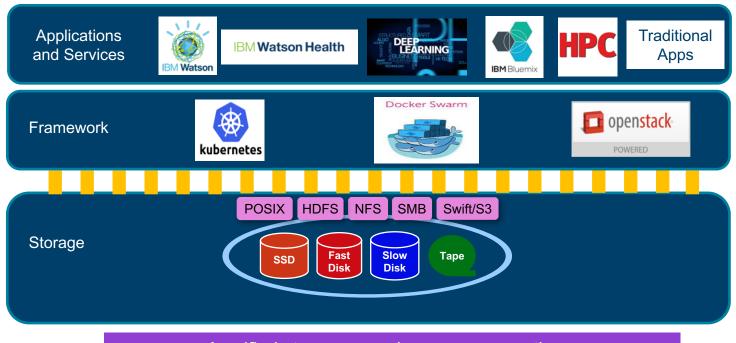
Spectrum Scale Container Developer Workflow

Spectrum Scale Container Developer Demo


Containers

Self Contained (Portable) Data Access Isolation (Multi-Tenancy) **Data Management High Performance Data Access** Fast and lightweight **Resource Utilization Open-Source Global Repositories**

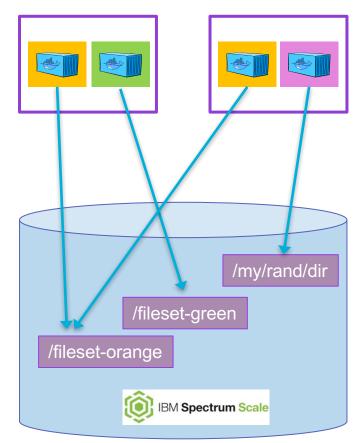
Containers, Containers, Containers


- HPC and Scientific Computing
 - Portable and reproducible science
 - One-Click Laptop to Supercomputer
- Apps in Clouds
 - Scheduling and Auto-Scaling
 - Improved resource utilization
 - Isolation and Multi-Tenancy
- Development, DevOps and continuous integration
 - Re-use of applications and services
 - Simplify and accelerate application deployment

Next Gen, Micro-Service, and Traditional Applications

New Gen Application, Framework, and Storage EcoSystem

A unified storage experience across runtimes


1. Self Contained (Portable)

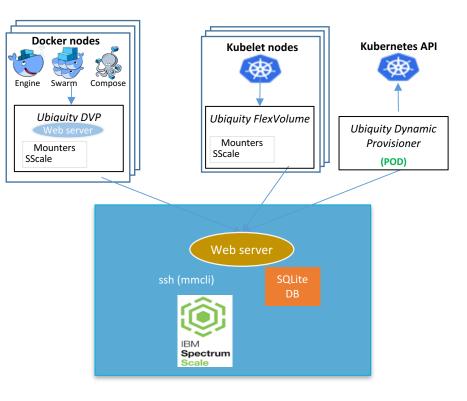
- Containers can package OS, libraries, app. or any other req. software
- Key requirement is the same OS kernel
 - Linux can run on Linux, Windows can run on Windows
- Configurable configurability (args passed to container)
 - Nothing
 - Additional arguments
 - External data volumes
 - Application to run
- Container lifetime can be tied to application
 - Allows container scheduler to perform H/A
- Note the difference between an Image, and a Dockerfile
 - Image An ordered collection of changes organized in static layers
 - Guaranteed to be the same no matter where it is copied and executed
 - Dockerfile A file containing all the commands that you would run to create an image
 - Not guaranteed to create the same image from one execution to another
 - E.g., the results of 'yum install gcc' can very based upon configuration and time

2. Data Access Isolation (Multi-Tenancy)

- Spectrum Scale commands not accessible
- Changes to image
 - Private to that image
 - Can be saved or discarded by admin
- Changes to external volumes
 - Can only access its volumes (and no other)
 - Volumes can be any file path
 - Userids can be the same in container as in FS
 - Linux user namespaces can also do mapping
 - Root can access any file 'in volume'
 - ACLs work as per usual
 - POSIX ACLs can be set from inside container
 - SELinux can be label volumes and only allow access from specific containers

3. Data Management - Volumes

- Volume Plugins and Drivers
 - Implements storage specific parts of Docker and Kubernetes volume management commands
- Docker
 - docker volume create/inspect/ls/prune/rm VOLUME
 - Attach and detach GPFS and NFS volumes to hosts before/after container execution
- Kubernetes
 - Dynamic Provisioning Driver
 - Manage Persistent Volumes (PVs)
 - kubectl get pvc/pv
 - kubectl create -f claim-01.yaml
 - Creation is Asynchronous Scans for new "Persistent Volume Claims (PVCs)" and create if required
 - FlexVol Plugin
 - Attach and detach GPFS and NFS volumes to hosts before/after container execution


3. Data Management – Changing How Users Consume Storage

- Storage allocation can be managed by Docker/K8s or CI/App admin
- Users can identify datasets by *name (no need for file path)*
 - Examples
 - Identify input read-only datasets that are shared
 - Identify storage space allocated to a user
- Docker typically assumes admins to manage volumes, but then allows users to use the created volumes (but DDC probably enhances)
- K8s has a much more sophisticated storage strategy
 - Users decide if storage is retained, recycled, or removed upon container completion
 - Users can declare the type of storage required, and it can be mapped to existing (or new) Spectrum Scale storage types
 - K8s (and OpenShift) support a range of roles

Ubiquity Storage Volume Driver

- · Initially support 2 types of volumes:
 - Fileset volumes
 - Support optional quota and setting Linux userid/group permissions
 - · Support both independent or dependent filesets
 - Lightweight volumes
 - · Practically no limit
 - · Implemented as individual subdirectories in a fileset
- · Current mechanisms can set other features
- · Can map existing dirs/filesets into Volumes
- Currently GPFS and CES NFS
- Can use 'ssh' to call
- Planned Items
 - Run Ubiquity service in a container
 - Support Spectrum Scale REST-API
 - Support additional options for Spectrum Scale features
 - Add in support for IBM Block Storage

Kubernetes API

xtx

Ubiquity Storage Volume Driver

• Initially support 2 types of volumes:

- Ubiquity Service
- Ubiquity Docker Plugin

https://github.com/ibm/ubiquity

https://github.com/IBM/ubiquity-docker-plugin

Ubiquity K8s DP and FV

https://github.com/IBM/ubiguity-k8s

Available as an alpha release to gain experience with users and their use cases Support on a best effort basis Research code

Add in support for IBM Block Storage