

Spectrum Scale Object at CSCS

HPCXXL – Summer 2017 Giuseppe Lo Re, CSCS Sep 28, 2017

Outline

- CSCS overview
- Storage services
- IAAS motivations/use cases/constraints
- Openstack facility
- GPFS CES Object cluster
- Conclusion

CSCS overview

- CSCS is the Swiss National Supercomputing Centre
- Unit of the Swiss Federal Institute of Technology in Zurich (ETH Zurich), located in Lugano
- CSCS's resources are open to academia, industry and the business sector
- 2000 m² machine room with no single supporting pillar or any partitioning
- Some operational HPC supercomputers:
 - Piz Daint (Cray XC40/XC50)
 - Kesch + Escha (Meteoswiss, Cray CS-Storm)

(NEC Cluster)

- Mönch
- Phoenix
 (LHC CERN, Grid Cluster)
- Monte Leone (High-memory cluster)
- Gran Tavé (KNL R&D)

Storage services

- Posix file systems
 - GPFS
 - Lustre
- Data movers
 - GridFTP
 - Slurm queue
 - Active File Management
- TSM Backup/Archive
 - mmbackup
 - GPFS/HSM
 - Arema (BA API)
- NAS
 - GPFS CES for NFS and SMB
- dCache
- Object store

Filesystem	Size (TiB)	Туре
/users	86	GPFS
/apps	58	GPFS
/project	5940	GPFS
/store	3891	GPFS
/scratch/lcg	642	GPFS
/scratch/shared	1434	GPFS
GSS-BBP	3800	GPFS
/scratch/snx3000	6349	Sonexion
/scratch/snx2000	904	Sonexion
/scratch/snx1600	2765	Sonexion
/scratch/monch	350	Lustre
Escha /scratch	73	Lustre
Kesch /scratch	73	Lustre
dCache	2877	dCache
NAS	248	GPFS
/object	165	GPFS

IAAS motivations/use cases/constraints

- Cloud ideas today very popular among users
- Pay as you go approach vs submission-approval process: good for small scientific projects, with variable duration
- Fast resource availability
- Dynamic scaling
- Clear distinction of layers and responsibilities
- Easy access/management through Rest API

IAAS motivations/use cases/constraints

- Project which cannot run or don't need to run in Daint
- Web portals
- DBs
- users-to-users services
- Distributed scientific platforms:
 - Neuroinformatics
 - Material science
 - Data science

IAAS motivations/use cases/constraints

- Reuse of existing LDAP/Kerberos infrastructure for authentication
 - Avoids creating an isolated OpenStack "island"
- Be prepared to Federate services with other external IdPs
 - Beta users part of European initiatives
- Integration with CSCS storage infrastructure
 - SAN
 - GPFS
 - TSM
- Object store able to scale to PBs, and millions of objects, high bandwidth

Openstack facility

- Redhat OpenStack Platform
- Keycloak
- GPFS CES Object

Openstack facility (RHOSP)

Redhat Openstack Platform

Director (TripleO)

Central services			
pollux-controller-1	Keystone	Cinder	Glance
pollux-controller-2	Heat	Horizon	Galera
pollux-controller-3	Ceilometer	Neutron	Nova
	Haproxy	Mistral	

Compute services			
pollux-compute-1			
	KVM Nova		
pollux-compute-7		_	
pollux-compute-8	Neutron	Ceilometer	
pollux-compute-9			

Storage service		
pollux-cephstorage-1	Ceph	
pollux-cephstorage-2		
pollux-cephstorage-3		

Openstack facility (RHOSP)

- Fast deployment
- Starting point to build knowledge
- Enterprise grade support

Redhat Openstack Platform		Dire (Trip	ctor leO)
	Central servic	es	
pollux-controller-1	Keystone	Cinder	Glance
pollux-controller-2	Heat	Horizon	Galera
pollux-controller-3	Ceilometer	Neutron	Nova
	Haproxy	Mistral	

Compute services					
pollux-compute-1					
	KVM Nova				
pollux-compute-7		_			
pollux-compute-8	Neutron Ceilometer				
pollux-compute-9					

ETH zürich

Openstack facility (RHOSP)

Central services			
pollux-controller-1	Keystone	Cinder	Glance
pollux-controller-2	Heat	Horizon	Galera
pollux-controller-3	Ceilometer	Neutron	Nova
•	Haproxy	Mistral	

Redhat Openstack Platform

Director

(TripleO)

Compute services			
pollux-compute-1			
	KVM Nova		
pollux-compute-7		_	
pollux-compute-8	Neutron	Ceilometer	
pollux-compute-9			

Storage service		
pollux-cephstorage-1	Ceph	
pollux-cephstorage-2		
pollux-cephstorage-3		

Openstack facility (Keycloak)

- Identity and Access Management solution aimed at modern applications and services
- Based on standard protocols
- Need to maintain our users accounting unchanged (LDAP username and Kerberos password) → keystone natively don't allow this configuration.
- Be prepared to Federate services with other external IdPs

GPFS CES Object cluster

- CSCS storage strongly based on SAN
 - Servers decoupled from disks
 - No need for extra replicas
 - Automation/support from vendor for hardware replacement

GPFS features

- Posix access
- ILM: mmbackup, reporting/accounting
- HSM
- Quota
- Snapshot
- Single platform for several protocols :Swift, S3, SMB, NFS
- Promising features
 - SwiftOnFile
 - SwiftHLM (early testing)

GPFS CES Object cluster

- https://object.cscs.ch:443
- HAproxy added for SSL support
- Storage pools
 - Data pool on HDD
 - System pool for metadata on Flash
 - Dedicated pool for account/container DBs
- Backed up to TSM with snapshot
- Used to backup Cinder volumes, TSM plugin for Cinder/Chep not working
- GUI runs only on port 443
- GUI/monitoring setup issues
- S3 support problematic
- SMB dependency with ext-keystone

ETHzürich

GPFS CES Object cluster

Features evaluation

- Unified file and object interface
 - Neuroscience community interested to access data both from Object and Posix interface
- SwiftHLM
 - Material science community interested to have a the same interface for both online data and archived (tape) one

SwiftHLM: An Extension to the OpenStack Swift Object Storage to Support <u>High-Latency Media</u> (such as tape)

- Main/generic HLM function/component, open sourced <u>https://github.com/ibm-research/swifthlm</u>
- Extends Swift API
- Maps&Distributes Swift API requests to backend requests across storage nodes and replicas

SwiftHLM is a Community supported effort:

- Small/simple backend-specific component
- Maps SwiftHLM generic backend interface (GBI) HLM requests to backend-specific ILM operations
- Connectors created so far: Spectrum Archive, Spectrum Protect (trial versions); OpenLTFS (prototype/demo)
- Design discussion regular conf. calls: IBM, BDT, Fujitsu, Amethystum; Reviews at OpenStack events: Redhat, NTT, HP, RackSpace, SwiftStack
- Interest for integration with different backends: IBM w/ its Spectrum Archive** and Spectrum Protect**, BDT w/ BDT's Tape Library Connector, Fujitsu w/ its Optical Storage DA700, Amethystum w/ its NFS-mounted optical library
- Official status: SwiftHLM is an OpenStack Swift Associated Project https://docs.openstack.org/developer/swift/associated_projects.html#alternative-api

* CoffiSads data from disk to HLM media, does not change the Swift name space ** Trial software is available, the usage is documented in an IBM Red Book: <u>http://www.redbooks.ibm.com/abstracts/redp5430.html?Open</u>

SwiftHLM user/application API (extension of Swift API)

* Migrate/Recall

```
POST http://<host>:<port>/hlm/v1/<action>/<account>/<cont>/<obj>
POST http://<host>:<port>/hlm/v1/<action>/<account>/<cont>
```

<action> is MIGRATE or RECALL (case insensitive) return code: 202 (ok), or an error code

* Status of submitted requests (query pending/non-completed requests)

GET http://<host>:<port>/hlm/v1/REQUESTS/<account>/<cont>/<obj>
GET http://<host>:<port>/hlm/v1/REQUESTS/<account>/<cont>

return code: 200 (ok), or a standard error return value: JSON-encoded list of pending requests for object or container

-> faster and more efficient than "Status"

* Status of objects (query status of object or container)

```
GET http://<host>:<port>/hlm/v1/STATUS/<account>/<cont>/<obj>
GET http://<host>:<port>/hlm/v1/STATUS/<account>/<cont>
```

return code: 200 (ok), or a standard error return value: JSON-encoded list of objects and their states

-> likely needs limiting number of objects per request (ranged requests)

Conclusion

- GPFS Object store service deployed and now in production phase at CSCS
- Part of a wider Openstack facility
- Integration challenging: different vendors
- GPFS Object is based on Liberty/Mitaka
 - 3 releases older than RedHat
 - 4 releases older than community

Release	Date
Liberty	Oct 2015
Mitaka	Apr 2016
Newton	Oct 2016
Ocata	Feb 2017
Pike	Aug 2017

- This can be a problem, and it was for us when we tried to us the S3 API
 - Broken in Ocata
 - Fixed in Pike
 - Bug fix port from Pike to Ocata ok. To Mitaka not easy.
- Deploying a current Swift software is key for us
- Exposing the same endpoint/Rest API for both disks and tapes very important

Thank you for your attention.

Chapter Title

Quick Styles

Insert_Footer 22

ETH zürich

Mapping

