
George	Markomanolis
IO500	Committee:	John	Bent,	Julian	M.	Kunkel,	Jay	Lofstead

2017-11-12
http://www.io500.org

IBM	Spectrum	Scale	User	Group,	Denver,	Colorado,	USA

Why?

• The	increase	of	the	studied	domains,	lead	to	larger	data	output,	thus	more	
stress	on	filesystem
• Customers	buy	a	storage	only	by	evaluating	the	max	GB/s	achieved	by	IOR,	
while	many	real	applications	can	not	achieve	similar	performance
• The	I/O	efficiency	can	be	downgraded	by	interference	with	multiple	users
• A	real	case,	commercial	application	using	one	node,	was	consuming	more	
than	15%	of	the	overall	metadata	capacity
• We	need	a	suite	of	benchmarks	in	order	to	understand	what	are	the	real	
performance	expectations
• Tracking	storage	performance	and	sharing	best	practices

How?

• Community	driven	effort,	discussing	through	mailing	list,	Slack	etc.	
Everything	is	in	github (https://github.com/VI4IO/io-500-dev.git)	
• Patterns:	metadata,	data,	search
• Easy	for	optimized	patterns
• Hard	for	naïve	patterns

• Relies	on	community	benchmarks,	such	as	IOR,	mdtest (for	now)

What	is	IO-500?

IOR	Easy:	This	is	what	is	used	during	the	
procurements,	where	we	measure	the	most	
efficient	I/O	pattern,	user	can	declared	the	
parameters	and	we	save	one	file	per	MPI	process	

IOR	Hard:	Single-shared	file,	47008	byte	random	
access,	POSIX

MD	Easy:	Create	rank	directories	with	N	empty	
files
MD	Hard:	Single	shared	directory,	files	of	3901	
bytes,	POSIX	
Find:	Find	functionality	searches	for	files	of	3901	
bytes	across	all	the	created	files.	Sven	added	the	
mmfind.sh script	for	Spectrum	scale	environment	
(io-500-dev/utilities/find/mmfind.sh)

Challenges	&	Approach	I

• Representative	of	applications	and	user	requirements
• Using	different	workloads	for	extracting	upper	and	lower	
performance	in	the	cases	of	optimized	and	non-optimized	application	
respectively
• Report	meaningful	metrics
• Implement	a	find	functionality	(we	tried	3	different	versions)
• Libcircle is	used	by	parallel	find	and	it	is	not	friendly	with	machines	
which	do	not	provide	the	wrapper	mpicc,	problem	is	solved	with	
some	manual	modifications

Challenges	&	Approach	II

• Concurrent	runs	to	be	integrated,	already	initial	tests	provide	
interesting	results

• 5	minutes	limit	per	experiment	to	avoid	long	runs

• Extended	IOR/mdtest for	phase-out	stonewalling	options

• Easy	to	build,	less	than	70	seconds	for	the	basic	version	to	be	installed

How	to	run	IO-500

• git clone	https://github.com/VI4IO/io-500-dev	
• cd	io-500-dev	
• ./utilities/prepare.sh
• ./io500.sh		(submit	this	script	if	you	use	a	scheduler)
• email	results	to	submit@io500.org

Demo	installation	of	IO500

Modify	IO-500

• Modify	io500.sh	accordingly,	for	example:

io500_mpirun="mpirun"
io500_mpiargs="-np	2"
io500_ior_easy_params="-t 2048k	-b 2g	-F"
io500_mdtest_easy_files_per_proc=25000

Modify	IO-500	II

• Modify	io500.sh	accordingly,	select	which	experiments	to	be	
executed:
io500_run_ior_easy="True"
io500_run_md_easy="True	"
…
io500_run_md_hard_delete="True"

• For	valid submission,	you	need	to	execute	all	the	tests	while	the	write	
phases	should	take	at	least	5	minutes

Modify	IO-500	III

• Modify	io500.sh	accordingly,	uncomment	these	lines	and	declare	the	
path	to	your	pfind wrapper:

#io500_find_mpi="True"
#io500_find_cmd="$PWD/bin/pfind"

Example	of	a	test	case

[RESULT]	BW	 phase	1 ior_easy_write	 96.133	GB/s	:	time	187.24	seconds
[RESULT]	BW	 phase	2 ior_hard_write	 11.230	GB/s	:	time 46.79	seconds
[RESULT]	BW	 phase	3	 ior_easy_read 109.249	GB/s	:	time	164.76	seconds
[RESULT]	BW	 phase	4	 ior_hard_read 7.871	GB/s	:	time 66.74	seconds
[RESULT]	IOPS	phase	1	 mdtest_easy_write	 49.231	kiops	:	time 19.61	seconds
[RESULT]	IOPS	phase	2	 mdtest_hard_write	 15.444	kiops	:	time 17.05	seconds
[RESULT]	IOPS	phase	3	 find					 8.120	kiops	:	time 98.45	seconds
[RESULT]	IOPS	phase	5 mdtest_easy_stat 5.313	kiops	:	time	127.18	seconds
[RESULT]	IOPS	phase	6 mdtest_hard_stat 6.772	kiops	:	time 30.43	seconds
[RESULT]	IOPS	phase	7 mdtest_easy_delete	 14.873	kiops	:	time 49.98	seconds
[RESULT]	IOPS	phase	8 mdtest_hard_read	 45.599	kiops	:	time 10.16	seconds
[RESULT]	IOPS	phase	9 mdtest_hard_delete	 30.776	kiops	:	time 11.84	seconds
[SCORE]	Bandwidth	31.04	GB/s	:	IOPS	16.1537	kiops	:	TOTAL	501.4108

Experience	with	IO500	benchmark

• With	not	proper	tuning,	the	benchmark	will	finish	either	too	fast	or	too	
slow
• Start	tuning	with	small	values	and	increase	them	till	you	find	the	ones	that	
produce	the	required	outcome
• Be	sure	that	you	have	enough	space	for	the	output	data
• Check	form	the	IOR	output	if	it	recognizes	correctly	the	number	of	
processes	and	how	many	are	used	per	node
• If	the	benchmark	is	too	slow	without	reason,	check	if	other	users	execute	
intensive	I/O	applications
• Be	sure	that	you	do	not	harm	the	system,	try	to	execute	the	benchmark	
when	the	system	is	not	too	busy	or	during	maintenance
• For	the	IOR	Hard,	you	could	stripe	the	corresponding	folder

KAUST	– Cray	DataWarp – IO-500

• 300	compute	nodes,	2400	processes,	268	DataWarp nodes

• ior_easy_params="-t 2m	-b 192616m”
• ior_hard_writes_per_proc=77872
• mdtest_hard_files_per_proc=1630
• mdtest_easy_files_per_proc=10800

Presenting	data	in	radar	chart

0

0.2

0.4

0.6

0.8

1
Score

IO

MD

Tot	IOPs

Radar	chart
Ranked	systems

#1 #2

The	best	storage	I/O	system	
should	be	represented	in	a	
full	diamond	graph

NASA	- IOPS	Galore	Encore

Some	GPFS	systems	are	in	the	first	
IO500	list	which	will	be	presented	
on	Wednesday	at	IO500	BOF.

Would	you	be	interested	in	
providing	new	results?

Conclusions

• Till	now	the	IOR	easy	is	considered	the	normal	approach	for	
procurement,	however,	this	does	not	correspond	to	the	real	
application
• We	need	a	better	way	to	understand	the	procurement	of	storage	and	
IO500	seems	to	be	in	the	right	direction
• A	customer	can	conclude	to	decisions	based	on	his	application	
requirements
• We	plan	some	future	additions,	such	as	mix	workload
• More	submissions	we	have,	the	better	to	understand	the	various	
filesystems	

You	are	
welcome	to	
IO500	BOF!

