An ESS implementation in a Tier 1 HPC Centre

Maximising Performance - the NeSI Experience

José Higino (NeSI Platforms and NIWA, HPC Systems Engineer)


New Zealand eScience Infrastructure

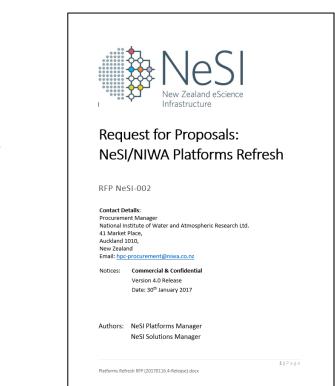
Outline

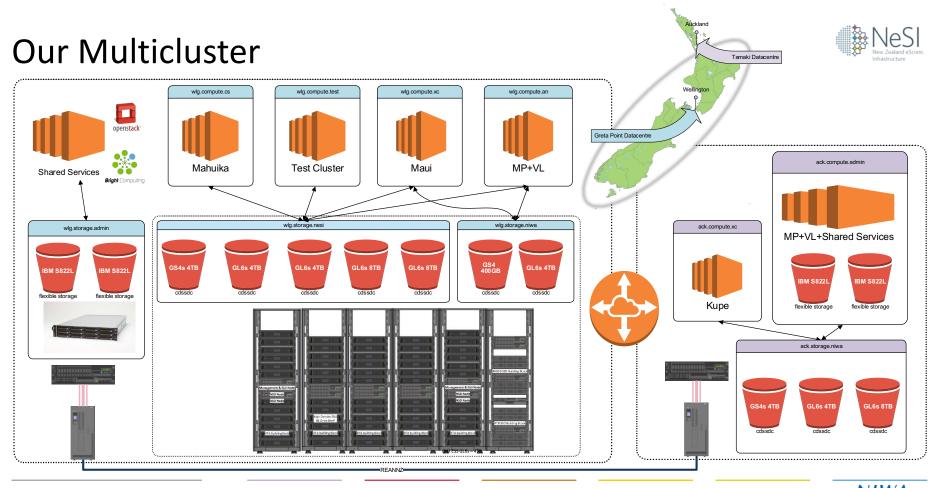
- What is NeSI?
- The National Platforms Framework
- Our Multicluster
- I/O Performance Upgrade
- Dual Cluster Structure
- Single point of management (EMS)
- Finally a good Web Interface (GUI)
- ILM Policies and REST API
- Integrating Spectrum Scale with SR-IOV / OpenStack
- Protocol Nodes using OpenStack VMs
- ESS flash rebuilds using GNR
- Benchmarks

	\land	leSl			
цф.	New Zealand eScient Infrastructure				

What is NeSI?

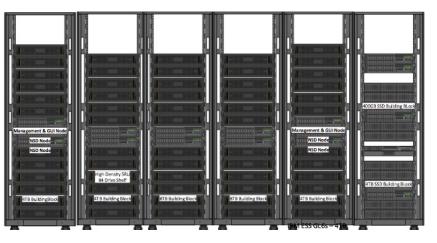
- Infrastructure and Services for Advanced Research Computing
 - High performance computing and data analytics services
 - Data, scientific consultancy, and training services
- Funding Institutions
 - NIWA, UoA, UoO, LR
- Available to the NZ Research Sector


Growing the computing capability of New Zealand researchers to ensure our future prosperity



Implementing the National Platforms Framework

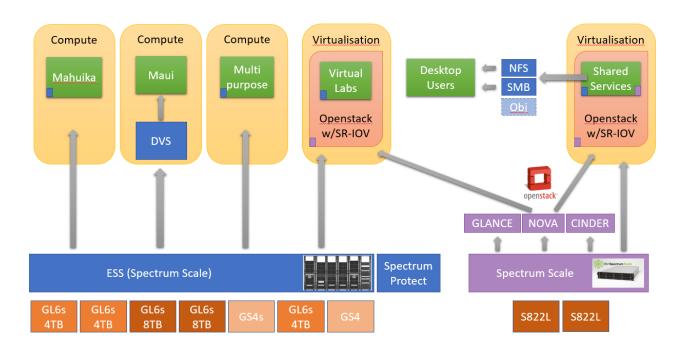
- Maximise value through combined investment:
 - One RFP for 3 HPC Systems;
 - Single Site (Greta Point);
 - Capacity & Capability HPCs share same Storage.
- Minimise data movement:
 - Pre and Post processing services;
 - Virtual Labs & Remote Visualisation;
 - HPC Data Analytics software stack;
 - Offline storage.
- The "Data Centre" becomes a "Centre of Data".


New Zealand eScience Infrastructure

NIWA Taihoro Nukurangi

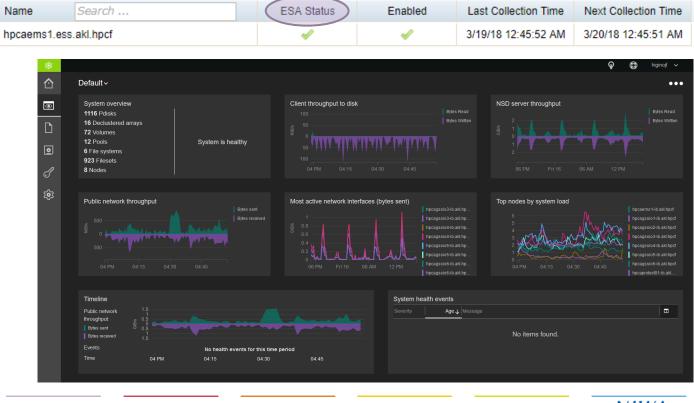
NeSI New Zealand escience Infrastructure

I/O Performance Upgrade


- Old DCS9900 (1500 disks), New ESS (2500 disks), excluding SSDs
- Bandwidth to Disk
 - Previous storage systems:
 - (DSxxxx models) Pan: ~1 GB/s;
 - (DCS9900) FitzRoy: ~8 GB/s;
 - New shared storage: >165 GB/s.
- Metadata performance (4KB)
 - Previous storage systems:
 - (DSxxxx SSDs) Pan: ~3K file creates/s;
 - (V7000 SSDs) FitzRoy: ~2.5K file creates/s;
 - New shared storage >200K file creates/s.
- New SSD storage pools (>132TB) Multipurpose/Services
- 8MB (16MB) Filesystem Block Size (previous systems had 1MB and 4MB)

Dual Cluster Structure

- Flexible Storage (S822L)
 - Provisioning OSes (OpenStack VMs)
 - ✓ Databases (persistent)
- Main Data Storage (ESS)
 - ✓ VM access via SR-IOV
 - ✓ Direct access
 - ✓ HSM Filesystem
 - ✓ Cray DVS nodes
 - ✓ Other Clusters (Protocol Nodes)



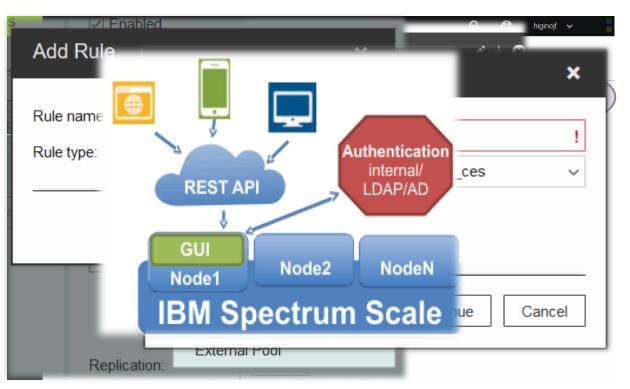
EMS (Single point of management)

۰

- GUI Server
- xCAT based
- ESS Deployement
- Monitoring
 - ✓ Performance
 - ✓ Events/Faults
 - ✓ Advices
- Call Home (ESA)
- Upgrades

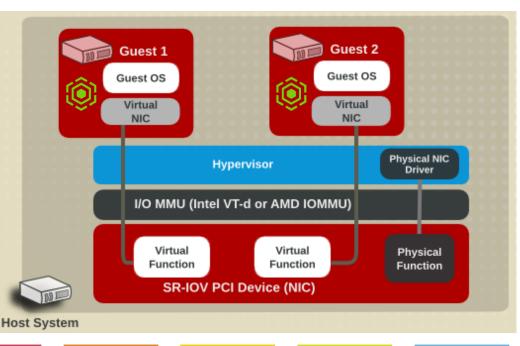
Spectrum Scale Web Management Interface (GUI)

- Hardware maintenance
- Statistics and Events
- Create and manage:
 - ✓ Filesystems
 - ✓ Filesets
 - ✓ Snapshots
 - ✓ Quotas
 - ✓ ILM Policies
- User access
- Notifications


			ę	🤀 higinojf 🗸
Hardware Servers B Disk Enclosures 16	Nodes All Nodes a	NSD Servers	Ignore Share your data Using NFS, SMB and Object protocols. Learn more.	Remote Clusters Clusters 2 File Systems Nodes 6 1 47
Pdisks Pdisks 1116	Storage Pools 2005 12 By used capacity 0 0 0 0 0 0 0 0 0 0	NSDs 56	Network Nodes 8	Services GPFS daemon GUI Performance monitor
IBM Spectrum Scale RAID Declustered Arrays ID 16 Recovery Groups 6	File System File Systems b 6 By used capacity 0 0 0 0 0% 70% 80% 90% 100%	Filesets	Cloud tiering not enabled	

Managing is now very simple!

- Policy Management:
 - ✓ Create/Delete
 - ✓ Enable/Disable
 - ✓ Predefined rules
 - ✓ Order rules
- See the text code
- Import policy files
- REST API (via GUI)



Spectrum Scale with SR-IOV / penStack

- Virtual Interfaces on VMs
 - Infiniband (with RDMA)
 - Ethernet (1/10 Gbps)
- Orchestration via Bright OpenStack
- Heterogeneous Clusters (VM+BareMetal)

Protocol Nodes using penStack VMs

Mount Options

rw

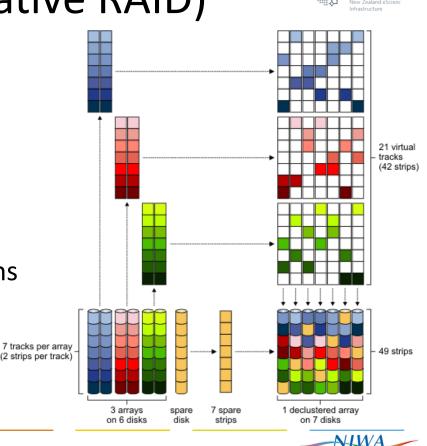
- High Available Services
 - ✓ Samba

✓ NFS

[root@hpcaces01 ~]# mmremotefs show scale_akl_ces
Local Name Remote Name Cluster name Mount Point
scale akl ces scale akl ces akl.storage.niwa //scale akl ces

- ✓ (Planned) Object (Swift/S3 API)
- ✓ (Exploring) File Auditing^{*1}
- IP Distribution/Failback Policy
- Spectrum Scale Scalability
- Infiniband/10Gbps Ethernet
- Multicluster Support *1

*1 - File Auditing not yet available across Multicluster configurations (2018-03-24)


GPFS c	luster information			
	cluster name: cluster id:		ompute.an 615841397154997	
Cluste	r Export Services glob	bal para	ameters	
Enab Log	ed root directory: led Services: level: ess distribution polic	:y:	/scale_ak NFS 3 even-cove	l_ces/filesets/ces1 rage
Node	Daemon node name		IP address	CES IP address list
29 30	hpcaces02-ib.kupe.niv hpcaces01-ib.kupe.niv	va.co.n: va.co.n:	z 192.168.236.2 z 192.168.236.1	00 192.168.235.202 99 None

ESS flash rebuilds (GPFS Native RAID)

Declustered arrays

- ✓ Distributed Parity (less localized)
- ✓ Software (uses system memory)
- ✓ Increased IO Distribution
- ✓ Higher Capacity available
- Powerful Resilience for Large Installations
- Dual path (hardware) Recovery Groups
- Tolerant to multiple disk failures

Taihoro Nukurangi

Benchmarks (2x GL6s + GS4s)

- MDTEST (Kupe, Auckland)
 - ✓ From Cray XC50 (32 nodes with 2 tasks/node), in:
 - Unique directory file creation: 28.527 sec, 36757.358 ops/sec
 - Single directory file creation: 39.952 sec, 26245.610 ops/sec
- IOR (Kupe, Auckland)

✓ From Cray XC50 (2x 52 nodes writing/reading with 2 tasks/node), 8MB Block Size:

Operation	Max (MiB)	Min (MiB)	Mean (MiB)	Std Dev	Max (OPs)	Min (OPs)	Mean (OPs)	Std Dev Mean (s)
read	29512.25	29512.25	29512.25	0.00	4855.00	4855.00	4855.00	0.00 241.28882
write	38193.01	38193.01	38193.01	0.00	4855.92	4855.92	4855.92	0.00 241.24286
			45.84 MB/sec)					

Max Write: 38193.01 MiB/sec (40048.28 MB/sec)

Summary 1/2

- Our facts and what we value most:
 - Continuously running GPFS filesystems <u>since 2010</u> while:
 - Rolling software upgrades with no filesystem downtime;
 - Never losing data;
 - Shifting disk resources between live filesystems to meet new requirements in space and performance;
 - Continuous performance improvements and bug-fixing;
 - Flexibility of Spectrum Scale Features/Multicluster environments;
 - Provide SMB and NFS services via Spectrum Scale Protocol Nodes;
 - Integration with Spectrum Protect, providing Hierarchical Storage Management (Tape Storage).

Summary 2/2

- Where we are going next:
 - Upgrade ESS to support bigger sub-block division (change to 16MB Block Size) and reduced IO latency;
 - Fine tune Spectrum Scale and Spectrum Protect clusters for replication of backups between sites (Auckland and Wellington);
 - ESS LDAP integration (and GUI);
 - Enhancing Automation using REST API;
 - Implement Samba and Object Services (Protocol Nodes);
 - Benchmark performance of Spectrum Scale over SR-IOV.

Mahuika: HPC Cluster

- 234 compute node Cray CS400 cluster (8,424 x 2.1 GHz Broadwell cores, CentOS)
- FDR Infiniband network on compute nodes
- CS400 Virtual Labs, pre and post processing nodes (640 x 2.1GHz Broadwell cores, CentOS)
- Huge Memory node (4TB)
- Remote visualization
- GPGPUs (8 x P100)
- 100% NeSI access

Maui: HPC Supercomputer

- 464 compute node Cray XC50 supercomputer (18,560 x 2.4GHz Skylake cores, SLES)
- Cray Aries network
- CS500 Virtual Labs, pre and post processing nodes (1,120 x 2.4GHz Skylake cores, CentOS)
- Urika-XC Advanced Data Analytics
- Remote visualization
- GPGPUs (8 x P100)
- 57% NeSI access

Shared Storage

IBM ESS GL4S and GL6S disk storage (>10PB, >165 GB/s), Spectrum Scale (aka GPFS)

EDR Infiniband network

Spectrum Protect Hierarchical Storage Management system (storing >150PB in tape)

