
Spectrum Scale Policy
“Best Practices”

Marc A Kaplan

makaplan@us.ibm.com

2018.05.17

Policy Rules

SQL-like statements to control:
 Storage Pool selection at creation (SET POOL)
 Pool to Pool MIGRATE by mmapplypolicy command
 To/From EXTERNAL POOLs, aka TSM/HSM, HPSS, TCT
 General LIST and EXEC rules for rapid, parallel

 processing of files selected by
WHERE (sql-expr-over-file-attributes: ACCESS_TIME,
NAME, USER_ID, MODE, eXtendedATTR, ...)

 Spectrum Scale Policy Rules

Rule 's1' SET POOL 'images' LIMIT(94)
 WHERE NAME LIKE '%.jpg' OR NAME LIKE '%.mpg'
Rule 's2' SET POOL 'data' LIMIT(92)
Rule 's3' SET POOL 'oops' /* default */

define([access_days],
 [(CURRENT_TIMESTAMP-ACCESS_TIME> INTERVAL '$1' DAYS)])

Rule 'm1' MIGRATE TO POOL 'cool' WHERE access_days(14)

Rule 'd2' DELETE WHERE access_days(31) AND
 PATH_NAME LIKE '%/tmp/%'

Rule 'l1' EXTERNAL LIST 'LA' EXEC ''
Rule 'l2' LIST 'L' WHERE some_sql_condition

Rule 'l3' EXTERNAL LIST 'LB' EXEC ''
Rule 'l4' LIST 'LB' WHERE some_other_sql_boolean_expr

Policy engine == SQL interpreter
• code linked into the mmfsd "the daemon" binary

 and ...
• linked into tsapolicy, the mmapplypolicy binary
• C++ virtual methodology adapters for the different

 runtime environments
• based on Bob Rees' interpreter, Storage Tank...

 subset of ANSI SQL plus the m4 macro processor
• run time optimizations - 10/90 and fixes
• IBM Spectrum Scale: Administration Guide, Chapter

23 “Information Lifecycle Management ...”

mmapplypolicy:
 a Parallel, Robust File Scanner
• node and thread parallel
• one master process, multiple helper processes
• Posix threads + threads use popen command pipes
• DirectoryWalk - as directories are discovered, work is distributed

to helpers and threads. Checkpointing with recovery from
 helper failure.
==> lists of (inode, path) - organized into inode number ranges
from each node. [inode_range_j, node_k]

• piped sorts for inode ranges [j,*] drive parallel inodescans
• InodeScan exploits sequentiality of inode file
• rules/SQL evaluation of each inode and its attributes

File Scanner and Exec, cont'd...

• results of inode-scan-SQL-eval is set of Policy Decision
Records : (weight,inode, path, rule_index, pool, other-attributes,...)
 (WEIGHT(sql_numeric_expr) in rule)

• multiple PDR files [node_k, m]
• parallel sort-merge of PDR files... popen(/bin/sort ...) for

 WEIGHT(age) THRESHOLD(90,60) based choices of
 MIGRATE, DELETE, and/or LIST-EXEC - the PdrScan

• parallel execution of migrate, delete, EXEC-script,

by "bunches" of PDRs
• robust against helper failures - redo of inode range,

 redo of PDR bunch

 Parallel Directory and Inodes Scans
1. Each of N nodes starts

with a directory to walk.
2. Each directory entry is

assigned to one of M
(sub)buckets based on
high bits of inode number.

3. The N nodes store entries
into N x M sub-buckets.
(typ. choose M>N)

4. In the next phase, nodes
are assigned rows of work.
Each row has 1/M of all
inodes.

5. Each row of N sub-
buckets is sorted in inode
order for policy evaluation.
Each node evaluates
policy rules on the inodes
in its assigned rows.

1 node

M

N

Also...

• mmbackup - built on mmapplypolicy
• mmimgbackup and restore - mmapplypolicy with

dynamically linked (shlib) special options and hooks
- HSM based disaster recovery or file system export
/import.

• AFM - maintenance and recovery commands use
 mmapplypolicy, special options: scan all inode
numbers, with or without matching directory
entries, supply [(inode,path)...] input file, ...

 parallel `find ... | xargs ...`
 ==> `mmfind ... -xargs ...`

• find files that match criteria and execute a command
or any script on each file

• implemented as a perl script that translates classic
find predicates (-f -o -a -newer ...) to gpfs-policy-sql and
 invokes mmapplypolicy

• fully parallelized, multi-node, multi-threaded
directory walk, inodescan, sorting/selection,
command executions

• samples/ilm/mmfind & friends
• FindTo Sql translator – tr_findToPol.pl -

 may be used as an assistant or "crutch"
• mmfind ... --help --polflags '-N all -g /gpfs/tdir' ...

 mmxargs – take care of “special characters” in pathnames when using LIST rules

mmapplypolicy path -P rules -M OLDU=matt -M NEWU=makaplan

RULE 'x' EXTERNAL LIST 'x' EXEC '/usr/lpp/mmfs/bin/mmxargs'
 OPTS 'chown NEWU'

RULE 'x1' LIST 'x' DIRECTORIES_PLUS
 WHERE USER_NAME=OLDU

Pathnames can contain any byte values 0x01..0xFF, not-necessarily UTF-8
Default policy LIST format only escapes \\ and \n.
Alternative:
 rule 'x' external list 'x' exec '…' opts '…' ESCAPE '%/+@'
 /* RFC3986 %xx encoding of non-alpha-numerics with a few exceptions */

mmapplypolicy … -I defer -f /path/pre … # to save file LISTs

 Learn Policy/SQL by “Examples and Tips”
 in Spectrum Scale Administration Guide

Dates and Weights:

RULE ’a’ MIGRATE TO POOL ’A’
 WEIGHT(CURRENT_TIMESTAMP - ACCESS_TIME)
 WHERE
 CURRENT_TIMESTAMP - MODIFICATION_TIME > INTERVAL ’10’ DAYS

Use `m4`, SHOW, -I test, -L 6: (often -L2 or -L3 is enough)

define(access_age_in_days,
 (INTEGER(((CURRENT_TIMESTAMP – ACCESS_TIME)
 SECONDS)) /(24*3600.0)))

RULE external list 'w' exec ''
RULE list 'w' WEIGHT(access_age_in_days) SHOW(access_age_in_days)

mmapplypolicy /root/test_dir -P rules -I test -L 6

define([toSeconds],[(($1) SECONDS(12,6))])
define([toUnixSeconds],[toSeconds($1 - ’1970-1-1@0:00’)])

RULE external list b ...

RULE list b
 SHOW(’sinceNow=’ toSeconds(current_timestamp-modification_time))

RULE external list c ...

RULE list c
 SHOW(’sinceUnixEpoch=’ toUnixSeconds(modification_time))

Policy TimeStamp to Unix Seconds

mailto:1970-1-1@0

 LIKE is nice but sometimes you want the power of Regex

… WHERE REGEX(name,[’^[a-z]*$’]) /* only accept lowercase names */

… WHERE NOT REGEX(STRING_VALUE,[’^[^z]*$|^[^y]*$|^[^x]*$|[abc]’])
 /* test if STRING_VALUE contains all of the characters x, y, and z, in any order,
 and none of the characters a, b, or c. */

 Say less, do more ...

Rule 'm' MIGRATE TO POOL 'data'
 /* no FROM POOL ==> all pools
 no WHERE == WHERE TRUE == WHERE NAME LIKE '%' */

 LIKE From pools, For Filesets ... but more

WHERE POOL_NAME LIKE 'dat%'
WHERE FILESET_NAME LIKE 'fx%'

file scan benchmarks

● IBM intros Elastic Storage - as used by HPC brain
 Watson 10 billion files, 43 mins ... Where've we heard
 that before? by Chris Mellor (The Register: 2014)

• GPFS Scans 10 Billion Files in 43 Minutes 10 Billion F
iles in 43 Minutes 10 Billion Files in 43 Minutes - DS
Con (2011: Freitas, Slember, Sawdon, et.al.) on two
SSD boxes with 10 nodes

• 1 Billion in 20 minutes (2007) on real disks with 8 n
odes

GPFS/HPSS Billion File Demo at SC’07

Show complete HSM/BA solution for 1B files

Less than 1 Second per Million Files!
Less than 15 Minutes per Billion Files!

Using 8x IBM eServer xSeries 336 (3.2GHz Intel Xeon)
attached at 4Gb/s to

IBM DS-4800 (2.1 TB RAID1) & IBM DS-4100 (10.2TB RAID5)

mmapplypolicy: File Scanning Performance Tips
● Use fastest storage for system pool == metadata == directories + inodes + …

● SSD, Flash, or Fastest Disks
 ... but probably NOT Raid-5 – stripe update problem
 … independently seeking devices, non-interfering IO paths
 for thread and node parallel access

● mmcrnsd … %nsd ... pool=system,usage=metadataOnly
● consider metadata blocksize vs data blocksize

mmcrfs … -B nnnn … --metadata-block-size mmmm
● more files per directory ==> faster directory scanning

or small directories ==> directory in inode

● mmapplypolicy … -N nodelist … -g sharedTmpDir
 mmchconfig … defaultHelperNodes … sharedTmpDir
● Release 5.0.1 defaults: -N managerNodes and -g .mmSharedTmpDir
● Prior default: single node execution with multi-threading

● mmapplypolicy … --choice-algorithm fast && ... WEIGHT(0) …
 (avoids final sort of all selected files by weight)

● mmapplypolicy /pathToIndependentFileset --scope inodeSpace
 (scan only the files and inodes in an independent fileset)

Be aggressive...

mmapplypolicy ... -a IscanThreads
 = number of inode scanning threads per node
 with one sort process feeding each inodescan (Use sparingly!)

Or pace yourself with QOS…

mmchqos FS --enable pool=*,maintenance=100iops
mmapplypolicy …

[I] Qos 'maintenance' configured as 100.0IOPS

“independent” Filesets

 Filesets divide name space
 Named subtree may be unlinked & moved
 Share underlying storage

 Original Filesets
 Shared inode space (within blocks)

 Cost proportional to file system size

 New Filesets
 Logically have private inode space

 Cost proportional to fileset size
How to make Inode numbers unique?

(without fixed partitions)

 Dynamic Inode Space Partitioning
 Shared inode space (by block ranges)
 No fixed limit on number of files or filesets

 64 bit limit on total

AbleAble

usersusers

BakerBaker
CharlieCharlie

I node Space

 Per fileset Snapshots, Backup, Restore, Data Management, …

 0  260 0  264

LWE -beyond file creation and
 mmapplypolicy...
• Light Weight Events - "hook" OPEN, READ, WRITE,

CLOSE, RMDIR, ..., posix and GPFS api.
• EVENT 'OPEN' ACTION(any) WHERE (sql-expr)
• ACTION(any) can be any sql expr: eval TRUE|FALSE,

including functions with effects:
• SetXattr, System(any-program-and-args-as-sql-strin

g-expr), SetSpecial(caching-controls),
other callbacks to internal file system methods

• Basis for TCT, mmaudit, other audit-like APIs coming

	Slide 1
	Policy Rules
	Slide 3
	SQL interpreter
	Parallel, Robust File Scanner
	File Scanner and Exec, cont'd...
	Parallel Sort using shared file system
	Also...
	parallel `find ... | xargs ...` == `mmfind ... -xargs ...`
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	file scan benchmarks
	GPFS/HPSS Billion File Demo at SC’07
	Slide 16
	Slide 17
	Slide 18
	New Fileset Design
	LWE -beyond creation and applypolicy...

