
Spectrum Scale Policy
“Best Practices”

Marc A Kaplan

makaplan@us.ibm.com

2018.05.17

Policy Rules

SQL-like statements to control:
 Storage Pool selection at creation (SET POOL)
 Pool to Pool MIGRATE by mmapplypolicy command
 To/From EXTERNAL POOLs, aka TSM/HSM, HPSS, TCT
 General LIST and EXEC rules for rapid, parallel

 processing of files selected by
WHERE (sql-expr-over-file-attributes: ACCESS_TIME,
NAME, USER_ID, MODE, eXtendedATTR, ...)

 Spectrum Scale Policy Rules

Rule 's1' SET POOL 'images' LIMIT(94)
 WHERE NAME LIKE '%.jpg' OR NAME LIKE '%.mpg'
Rule 's2' SET POOL 'data' LIMIT(92)
Rule 's3' SET POOL 'oops' /* default */

define([access_days],
 [(CURRENT_TIMESTAMP-ACCESS_TIME> INTERVAL '$1' DAYS)])

Rule 'm1' MIGRATE TO POOL 'cool' WHERE access_days(14)

Rule 'd2' DELETE WHERE access_days(31) AND
 PATH_NAME LIKE '%/tmp/%'

Rule 'l1' EXTERNAL LIST 'LA' EXEC ''
Rule 'l2' LIST 'L' WHERE some_sql_condition

Rule 'l3' EXTERNAL LIST 'LB' EXEC ''
Rule 'l4' LIST 'LB' WHERE some_other_sql_boolean_expr

Policy engine == SQL interpreter
• code linked into the mmfsd "the daemon" binary

 and ...
• linked into tsapolicy, the mmapplypolicy binary
• C++ virtual methodology adapters for the different

 runtime environments
• based on Bob Rees' interpreter, Storage Tank...

 subset of ANSI SQL plus the m4 macro processor
• run time optimizations - 10/90 and fixes
• IBM Spectrum Scale: Administration Guide, Chapter

23 “Information Lifecycle Management ...”

mmapplypolicy:
 a Parallel, Robust File Scanner
• node and thread parallel
• one master process, multiple helper processes
• Posix threads + threads use popen command pipes
• DirectoryWalk - as directories are discovered, work is distributed

to helpers and threads. Checkpointing with recovery from
 helper failure.
==> lists of (inode, path) - organized into inode number ranges
from each node. [inode_range_j, node_k]

• piped sorts for inode ranges [j,*] drive parallel inodescans
• InodeScan exploits sequentiality of inode file
• rules/SQL evaluation of each inode and its attributes

File Scanner and Exec, cont'd...

• results of inode-scan-SQL-eval is set of Policy Decision
Records : (weight,inode, path, rule_index, pool, other-attributes,...)
 (WEIGHT(sql_numeric_expr) in rule)

• multiple PDR files [node_k, m]
• parallel sort-merge of PDR files... popen(/bin/sort ...) for

 WEIGHT(age) THRESHOLD(90,60) based choices of
 MIGRATE, DELETE, and/or LIST-EXEC - the PdrScan

• parallel execution of migrate, delete, EXEC-script,

by "bunches" of PDRs
• robust against helper failures - redo of inode range,

 redo of PDR bunch

 Parallel Directory and Inodes Scans
1. Each of N nodes starts

with a directory to walk.
2. Each directory entry is

assigned to one of M
(sub)buckets based on
high bits of inode number.

3. The N nodes store entries
into N x M sub-buckets.
(typ. choose M>N)

4. In the next phase, nodes
are assigned rows of work.
Each row has 1/M of all
inodes.

5. Each row of N sub-
buckets is sorted in inode
order for policy evaluation.
Each node evaluates
policy rules on the inodes
in its assigned rows.

1 node

M

N

Also...

• mmbackup - built on mmapplypolicy
• mmimgbackup and restore - mmapplypolicy with

dynamically linked (shlib) special options and hooks
- HSM based disaster recovery or file system export
/import.

• AFM - maintenance and recovery commands use
 mmapplypolicy, special options: scan all inode
numbers, with or without matching directory
entries, supply [(inode,path)...] input file, ...

 parallel `find ... | xargs ...`
 ==> `mmfind ... -xargs ...`

• find files that match criteria and execute a command
or any script on each file

• implemented as a perl script that translates classic
find predicates (-f -o -a -newer ...) to gpfs-policy-sql and
 invokes mmapplypolicy

• fully parallelized, multi-node, multi-threaded
directory walk, inodescan, sorting/selection,
command executions

• samples/ilm/mmfind & friends
• FindTo Sql translator – tr_findToPol.pl -

 may be used as an assistant or "crutch"
• mmfind ... --help --polflags '-N all -g /gpfs/tdir' ...

 mmxargs – take care of “special characters” in pathnames when using LIST rules

mmapplypolicy path -P rules -M OLDU=matt -M NEWU=makaplan

RULE 'x' EXTERNAL LIST 'x' EXEC '/usr/lpp/mmfs/bin/mmxargs'
 OPTS 'chown NEWU'

RULE 'x1' LIST 'x' DIRECTORIES_PLUS
 WHERE USER_NAME=OLDU

Pathnames can contain any byte values 0x01..0xFF, not-necessarily UTF-8
Default policy LIST format only escapes \\ and \n.
Alternative:
 rule 'x' external list 'x' exec '…' opts '…' ESCAPE '%/+@'
 /* RFC3986 %xx encoding of non-alpha-numerics with a few exceptions */

mmapplypolicy … -I defer -f /path/pre … # to save file LISTs

 Learn Policy/SQL by “Examples and Tips”
 in Spectrum Scale Administration Guide

Dates and Weights:

RULE ’a’ MIGRATE TO POOL ’A’
 WEIGHT(CURRENT_TIMESTAMP - ACCESS_TIME)
 WHERE
 CURRENT_TIMESTAMP - MODIFICATION_TIME > INTERVAL ’10’ DAYS

Use `m4`, SHOW, -I test, -L 6: (often -L2 or -L3 is enough)

define(access_age_in_days,
 (INTEGER(((CURRENT_TIMESTAMP – ACCESS_TIME)
 SECONDS)) /(24*3600.0)))

RULE external list 'w' exec ''
RULE list 'w' WEIGHT(access_age_in_days) SHOW(access_age_in_days)

mmapplypolicy /root/test_dir -P rules -I test -L 6

define([toSeconds],[(($1) SECONDS(12,6))])
define([toUnixSeconds],[toSeconds($1 - ’1970-1-1@0:00’)])

RULE external list b ...

RULE list b
 SHOW(’sinceNow=’ toSeconds(current_timestamp-modification_time))

RULE external list c ...

RULE list c
 SHOW(’sinceUnixEpoch=’ toUnixSeconds(modification_time))

Policy TimeStamp to Unix Seconds

mailto:1970-1-1@0

 LIKE is nice but sometimes you want the power of Regex

… WHERE REGEX(name,[’^[a-z]*$’]) /* only accept lowercase names */

… WHERE NOT REGEX(STRING_VALUE,[’^[^z]*$|^[^y]*$|^[^x]*$|[abc]’])
 /* test if STRING_VALUE contains all of the characters x, y, and z, in any order,
 and none of the characters a, b, or c. */

 Say less, do more ...

Rule 'm' MIGRATE TO POOL 'data'
 /* no FROM POOL ==> all pools
 no WHERE == WHERE TRUE == WHERE NAME LIKE '%' */

 LIKE From pools, For Filesets ... but more

WHERE POOL_NAME LIKE 'dat%'
WHERE FILESET_NAME LIKE 'fx%'

file scan benchmarks

● IBM intros Elastic Storage - as used by HPC brain
 Watson 10 billion files, 43 mins ... Where've we heard
 that before? by Chris Mellor (The Register: 2014)

• GPFS Scans 10 Billion Files in 43 Minutes 10 Billion F
iles in 43 Minutes 10 Billion Files in 43 Minutes - DS
Con (2011: Freitas, Slember, Sawdon, et.al.) on two
SSD boxes with 10 nodes

• 1 Billion in 20 minutes (2007) on real disks with 8 n
odes

GPFS/HPSS Billion File Demo at SC’07

Show complete HSM/BA solution for 1B files

Less than 1 Second per Million Files!
Less than 15 Minutes per Billion Files!

Using 8x IBM eServer xSeries 336 (3.2GHz Intel Xeon)
attached at 4Gb/s to

IBM DS-4800 (2.1 TB RAID1) & IBM DS-4100 (10.2TB RAID5)

mmapplypolicy: File Scanning Performance Tips
● Use fastest storage for system pool == metadata == directories + inodes + …

● SSD, Flash, or Fastest Disks
 ... but probably NOT Raid-5 – stripe update problem
 … independently seeking devices, non-interfering IO paths
 for thread and node parallel access

● mmcrnsd … %nsd ... pool=system,usage=metadataOnly
● consider metadata blocksize vs data blocksize

mmcrfs … -B nnnn … --metadata-block-size mmmm
● more files per directory ==> faster directory scanning

or small directories ==> directory in inode

● mmapplypolicy … -N nodelist … -g sharedTmpDir
 mmchconfig … defaultHelperNodes … sharedTmpDir
● Release 5.0.1 defaults: -N managerNodes and -g .mmSharedTmpDir
● Prior default: single node execution with multi-threading

● mmapplypolicy … --choice-algorithm fast && ... WEIGHT(0) …
 (avoids final sort of all selected files by weight)

● mmapplypolicy /pathToIndependentFileset --scope inodeSpace
 (scan only the files and inodes in an independent fileset)

Be aggressive...

mmapplypolicy ... -a IscanThreads
 = number of inode scanning threads per node
 with one sort process feeding each inodescan (Use sparingly!)

Or pace yourself with QOS…

mmchqos FS --enable pool=*,maintenance=100iops
mmapplypolicy …

[I] Qos 'maintenance' configured as 100.0IOPS

“independent” Filesets

 Filesets divide name space
 Named subtree may be unlinked & moved
 Share underlying storage

 Original Filesets
 Shared inode space (within blocks)

 Cost proportional to file system size

 New Filesets
 Logically have private inode space

 Cost proportional to fileset size
How to make Inode numbers unique?

(without fixed partitions)

 Dynamic Inode Space Partitioning
 Shared inode space (by block ranges)
 No fixed limit on number of files or filesets

 64 bit limit on total

AbleAble

usersusers

BakerBaker
CharlieCharlie

I node Space

 Per fileset Snapshots, Backup, Restore, Data Management, …

 0 260 0 264

LWE -beyond file creation and
 mmapplypolicy...
• Light Weight Events - "hook" OPEN, READ, WRITE,

CLOSE, RMDIR, ..., posix and GPFS api.
• EVENT 'OPEN' ACTION(any) WHERE (sql-expr)
• ACTION(any) can be any sql expr: eval TRUE|FALSE,

including functions with effects:
• SetXattr, System(any-program-and-args-as-sql-strin

g-expr), SetSpecial(caching-controls),
other callbacks to internal file system methods

• Basis for TCT, mmaudit, other audit-like APIs coming

	Slide 1
	Policy Rules
	Slide 3
	SQL interpreter
	Parallel, Robust File Scanner
	File Scanner and Exec, cont'd...
	Parallel Sort using shared file system
	Also...
	parallel `find ... | xargs ...` == `mmfind ... -xargs ...`
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	file scan benchmarks
	GPFS/HPSS Billion File Demo at SC’07
	Slide 16
	Slide 17
	Slide 18
	New Fileset Design
	LWE -beyond creation and applypolicy...

